

GOLETA WATER DISTRICT

Trihalomethane Reduction Program

Plan for Proposed Full Scale Plant Test of Jenfitch JC9450

Abstract

This document details the proposed testing procedures and sampling plan to be undertaken by Goleta Water District for a full scale plant test of a proprietary chemical, Jenfitch JC9450, at the Corona Del Mar Water Treatment Plant. JC9450 will be tested for effectiveness as an alternative to sodium hypochlorite for pre-oxidation and for effectiveness in reducing trihalomethane formation. Jar testing performed by the Goleta Water District in October 2017 showed substantial reductions in trihalomethane levels and formation potential.

December 6, 2017

Table of Contents

Executive Summary	4
Purpose	6
Background	6
THM Reduction Program	6
JC9450 Jar Testing	7
Procedures	7
JC9450 Jar Test Results	8
Proposed Full Scale Testing	9
Objective	9
Current Plant Process Overview	9
Plant Preparation and Testing	11
JC9450 Chemical Introduction	14
Full Scale Plant Testing Schedule	15
Water Quality Sampling Plan	15
Safety	19
Attachment 1 - JC9450 Safety Data Sheet	21
Attachment 2 - JC9450 Material Analysis Data sheet	29
Attachment 3 - JC9450 NSF Listing	
Attachment 4 - JC9450 Jar Tests	43
Attachment 5 – JC9450 Jar Test Results From Eurofins	47
Attachment 6 – Daily Treatment Parameters Monitoring Sheet	96
Attachment 7 – Chemical Feed Plusafeeder Dosing Chart 2 – 10 mg/L	99
Attachment 8 – Filter Preparation Procedures	109
Attachment 9 – Chemical Addition Troubleshooting	

List of Figures

Figure 1 – Process flow diagram for CDM	7
Figure 2 – Current Plant Process and Dosages	10
Figure 3 – Proposed Full Scale Testing of JenFitch JC9450	11
Figure 4 – Chemical Storage Area and Containment Area for JC9450	113
Figure 5 – Chemical Feed Skid	133
Figure 6 – A drained and cleaned treatment basin	133
Figure 7 – Mobile ORP Monitor (MOM)	14
Figure 8 – Sample Location Map	

List of Tables

Table 1 – JC9450 Jar Test Results without using PAC (October 25, 2017)	8
Table 2 – JC9450 Jar Test Results using PAC (October 25, 2017)	8
Table 3 – Water Quality Sampling Plan Matrix for Full Scale Testing of JC9450 at CDMWTP	
Table 4 – Sampling Schedule	16
Table 5 – Sampling Frequency	19

Executive Summary

The Goleta Water District (GWD) is currently in compliance with all State and Federal drinking water quality standards, including the four-quarter Locational Running Annual Average (LRAA) total trihalomethanes (TTHM) standard of 80 micrograms per liter (μ g/L).

Water quality has been declining in Lake Cachuma, GWD's surface water supply, as a result of drought and wildfire impacts to its watershed. Increasing levels of organic matter are anticipated to exceed GWD's current treatment capabilities and persist at high levels into the foreseeable future. Accordingly, one of the District's top priorities is to maintain water quality, specifically to upgrade treatment to reduce organic matter and reduce the formation of THMs in the Corona Del Mar Water Treatment Plant (CDMWTP) treated water and in the distribution system.

This proposed plan serves to notify the California State Water Resources Control Board Division of Drinking Water of GWD's intent to perform a full scale plant test at CDMWTP of JC9450 as an alternative to sodium hypochlorite, with the goal of reducing THM formation. Manufactured by Jenfitch, LLC, JC9450 is a proprietary, NSF 61-approved water treatment chemical with properties similar to chlorine. Jenfitch NSF-approved products have been used for a number of water quality improvements by other water treatment plants, including Stenner Surface Water Treatment Plant (SSWTP) in San Luis Obispo, California and the City of Martinez Water Treatment Plant in Martinez, California.

Jar testing of JC9450 was performed by GWD staff in October 2017 to simulate CDMWTP treatment processes. GWD observed a 95% reduction of TTHM and a 21% reduction in the seven-day TTHM formation level in samples that were treated with a low dose of JC9450 as an oxidizing agent in lieu of sodium hypochlorite. Sodium hypochlorite was still used as the disinfectant.

Based on these promising results of the jar testing, GWD proposes a limited duration, low throughput, full scale plant test of JC9450. In addition to being NSF 61 approved, the JC9450 chemical has been used successfully at SSWTP and others plants with one adverse impacts reported: a turbidity increase at the filters, which was overcome by renewing the adsorption capacity of the filters. GWD is heeding the lesson of SSWTP's experience by proposing to super-chlorinate the filters in advance of the CDMWTP full scale test.

A preliminary full scale plant test of up to two weeks' duration is tentatively scheduled for January 2018. The test will allow GWD to evaluate the efficacy of JC9450 to reduce THM levels and formation potential and to monitor impacts to CDMWTP processes. During this test, GWD expects to operate CDMWTP at approximately three million gallons per day (MGD) throughput. GWD also anticipates meeting the balance of customer demand in the distribution system via groundwater production.

Full scale plant testing will be conducted with extensive process monitoring, cooperation from the chemical manufacturer, and routine plant sampling and monitoring by GWD Operators. If the initial two-week test shows promising results and no adverse impacts, the District expects to prepare for an additional full scale testing of up to three months to allow for a more comprehensive testing while primarily on surface water. During this longer full scale plant test, groundwater production may be

suspended and water quality changes will be monitored within CDMWTP and throughout the distribution over a longer period to evaluate the suitability of JC9450 as a long term treatment solution for reducing THM formation.

Purpose

This plan serves to notify the California State Water Resources Control Board Division of Drinking Water of Goleta Water District's (GWD) intent to perform a full scale plant test at Corona Del Mar Water Treatment Plant (CDMWTP) of an NSF 61-approved chemical, JC9450 from Jenfitch, LLC, to determine its efficacy for reducing total organic carbon (TOC) and trihalomethane (THM) formation. This plan also serves to detail GWD's testing approach, including an overview of the plant processes, a description of plant preparations for testing, a description of how the chemical will be introduced, a sampling plan, and safety measures.

Background

The District is currently in compliance with all State and Federal drinking water quality standards.

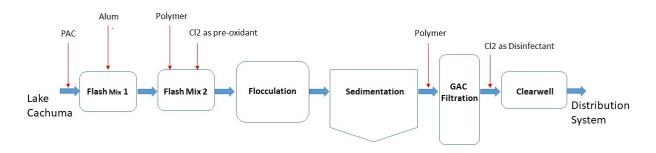
Six years of drought and two major wildfires in the Lake Cachuma watershed in the last 10 years have introduced large amounts of organic matter into Lake Cachuma via stormwater runoff. As a result, an increase of approximately 40% of total organic carbon (TOC) levels was measured, and further increases above the current level of 5.4 milligrams per liter (mg/L) are expected. Following the July 2017 Whittier fire in the immediate vicinity of Lake Cachuma, upcoming winter storms are expected to deliver even more organic matter to the lake when its steep watershed slopes experience runoff and erosion during the rainy seasons this winter and beyond. Additionally, fluctuation in lake levels before and during the recent drought promoted vegetation growth and decay of submerged vegetation, which is believed to have further increased the level of organic matter in the lake.

The elevated levels of organic matter are anticipated to exceed CDMWTP's capabilities for removal by existing treatment processes. As sodium hypochlorite is applied as a pre-oxidation agent and as disinfectant at CDMWTP, the reaction between chlorine and organic matter in the water forms THMs and other disinfection byproducts. The increased organic levels are expected to result in increased THM levels in CDMWTP treated water and throughout the distribution system.

In March 2017, in recognition of changing water quality conditions at Lake Cachuma, the GWD identified maintaining water quality as its top priority when the Board of Directors adopted an amendment to the 2015-2020 Infrastructure Improvement Plan.

THM Reduction Program

To help maintain water quality specific to THMs, GWD developed a THM reduction plan that includes immediate operational modifications that have already been implemented and short, intermediate and long term measures that include testing a range of treatment approaches. To reduce THMs in the short term, GWD is increasing its reliance on groundwater, which contains little to no TOC and therefore does not pose the same THM formation challenge as surface water from Lake Cachuma. Still, sufficient groundwater resources and production capacity do not exist to meet peak seasonal customer demand or to overcome Lake Cachuma water quality changes that are expected to persist for many years. Therefore, the plan's intermediate and long term measures include expanded treatment capacity at CDMWTP and/or in the distribution system.


GWD progress to date toward the intermediate and long term measures includes GWD having already performed jar testing, bench-scale testing, and/or pilot testing of ten different technologies, including jar testing of JC9450 manufactured by Jenfitch, LLC. GWD anticipates amending its current operation once intermediate and long term treatment measures are identified, which may include using JC9450 as an oxidation agent.

JC9450 Jar Testing

Jar testing of JC9450 with and without powder activated carbon (PAC) demonstrated substantial THM and total THM formation reductions when a dosage of 5 mg/L JC9450 was used as an alternative to sodium hypochlorite in CDMWTP water samples treated to simulate CDMWTP treatment processes (refer to Tables 1 and 2). Dosages of 10 mg/L and higher also achieved reductions in THM formation, but removal rate decreased as the dosage was increased up to 25 mg/L.

Procedures

The two jar test machines at the CDMWTP laboratory were programmed to simulate the plant operating conditions and the treatment processes prior to final disinfection. A simplified plant process flow diagram is illustrated in Figure 1.

Figure 1. Process flow diagram for CDM

Water samples were collected from the plant influent prior to the jar tests and were tested at room temperature. The jar testing machines were programmed as follows:

- 1. Rapid mix of 60 seconds at 100 rpm
- 2. Slow mix of 30 minutes at 30 rpm
- 3. Settling period of 60 minutes

At the conclusion of jar tests, samples of the settled water were collected from individual jars and subsequently filtered using a PALL 0.45 micron (μ m) membrane filter. The filtered samples that represented the plant filter effluent were handled according to the Standard Methods for the Examination of Water and Wastewater and shipped for futher analysis to Eurofins Eaton Analytical (EEA), the District's contract laboratory.

The samples were further treated to simulate water age in the distribution system. Filtered sample water was placed into 250 milliliter (mL) clear bottles without headspace and treated with 2.8 mg/L of

12.5 % sodium hypochlorite to simulate the plant disinfection process. Samples then were placed in a water bath and maintained at 27°C (80.6°F) for 168 hours to test for maximum TTHM formation. The water bath was covered to prevent light from penetrating into the sample bottles. The holding time of 168 hours (7 days) simulates the oldest water age estimated to occur anywhere in the distribution system. However, the typical water age in the outer reaches of the distribution system is estimated to be 144 hours (6 days).

Chemicals added to the jars included Powder Activated Carbon (PAC), alum, polymer (Magnafloc LT 7992), sodium hypochlorite, and JC9450 at dosages that corresponded to sequence and time delays between each chemical feed point during normal CDMWTP operating conditions. PAC slurry and dilute stock solutions of alum, polymer, and sodium hypochlorite were prepared using the District's undiluted chemical. Jar tests using JC9450 were completed by GWD staff on October 25, 2017.

JC9450 Jar Test Results

Of the five doses of JC9450 that were tested, 5 mg/L achieved the greatest reductions in THM levels and THM formation potential levels. Table 1 and Table 2 show the laboratory analytical results and TTHM concentrations that would be corresponding to the water quality in the clearwell prior to final disinfection and the maximum formation potential in the distribution system after 168 hours. The full laboratory report is included in Attachment 5.

Sample Name	Sample ID #	JC9450 Dose mg/L	рН	Alkalinity mg CaCO3/L	Ca mg/L	Cl mg/L	Total Fe mg/L	Total Mn mg/L	TOC mg C/L	TTHM μg/L	Max TTHM Formation (168 hrs) μg/L
Control	17-1025-1	0	7.40	140	81	29	< 0.02	0.014	4.7	45	140
JC 1	17-1025-2	5	7.34	150	78	27	< 0.02	0.014	4.6	2.2	110
JC 2	17-1025-3	10	7.36	150	79	28	< 0.02	0.013	4.5	6.2	130
JC 3	17-1025-4	15	7.40	140	79	28	< 0.02	0.013	4.5	12	140
JC 4	17-1025-5	20	7.44	140	78	29	< 0.02	0.012	4.5	26	140
JC 5	17-1025-6	25	7.47	150	80	31	< 0.02	0.011	4.4	41	150

 Table 1 - JC9450 Jar Test Results without using PAC (October 25, 2017)

Note: all samples were also dosed with 40 mg/L alum, 1 mg/L polymer, 2.8 mg/L sodium hypochlorite.

Sample Name	Sample ID #	JC9450 Dose mg/L	рН	Alkalinity mg CaCO3/L	Ca mg/L	Cl mg/L	Total Fe mg/L	Total Mn mg/L	TOC mg C/L	TTHM μg/L	Max TTHM Formation (16 hrs) μg/L
Control	17-1025-7	0	7.48	150	79	29	<0.02	0.006	4.8	31	170
JCP 1	17-1025-8	5	7.52	150	79	27	<0.02	0.014	4.7	2.1	120
JCP 2	17-1025-9	10	7.48	150	79	28	<0.02	0.015	4.7	5.3	120
JCP 3	17-1025-10	15	7.42	150	83	28	0.057	0.016	4.6	7.2	120
JCP 4	17-1025-11	20	7.49	150	81	29	<0.02	0.014	4.6	9.8	130
JCP 5	17-1025-12	25	7.50	150	80	31	<0.02	0.011	4.6	15	130

Table 2 – JC9450 Jar Test Results using PAC (October 25, 2017)

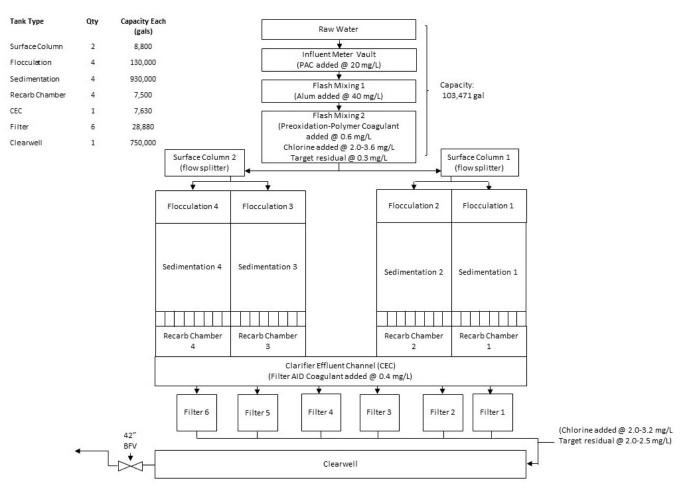
Note: all samples were also dosed with 20 mg/L PAC, 40 mg/L alum, 1 mg/L polymer, 2.8 mg/L sodium hypochlorite.

The effectiveness of JC9450 as an oxidant was also evidenced by very low levels of total iron and manganese concentrations in the treated water. At the 5 mg/L dose of JC9450, maximum TTHM formation was reduced by 50 μ g/L over the control sample.

Proposed Full Scale Testing

Full scale plant testing of JC9450 will allow GWD to obtain more detailed data on the efficacy of JC9450 to reduce TOC, THMs, and THM formation potential and on impacts to filter turbidity, algae and pathogen removal within the plant, corrosivity, and other potential disinfection byproducts. Further study of THM levels in the distribution system during a longer period full scale plant testing of JC9450 will be needed later to confirm the efficacy of JC9450 as a pre-oxidant alternative and a treatment chemical for THM control.

Objective


The objective of full scale testing of up to two weeks is to validate the THM reduction results measured during jar testing. While all other plant processes and operations are expected to remain unchanged, the goal is to gradually replace sodium hypochlorite with an initial dose of 5 mg/L of JC9450 in Flash Mix 2 at a flow rate of three (3) million gallons per day (MGD). Water quality through each treatment train process from flocculation through filtration will be monitored and the main focus will be given to monitoring the plant response by key water quality parameters, including pH, oxidation/reduction potential (ORP), filter turbidity, and TTHM reduction. JC9450 will initially be tested at 5 mg/L, but this dosage may be adjusted depending on the field data, daily plant inspections, and laboratory data.

Current Plant Process Overview

Figure 2 shows the current plant process, with the average chemical dosages currently being used. During full scale testing, GWD anticipates operating operate the treatment plant with a single train, isolating the other three trains from JC9450 testing. Therefore, full scale plant testing will be conducted by operating one flocculation basin, one sedimentation basin and three filters as shown in Figure 3. JC9450 will be added in place of sodium hypochlorite in Flash Mix 2.

Goleta Water District - Full Scale Plant Testing of Jenfitch JC9450

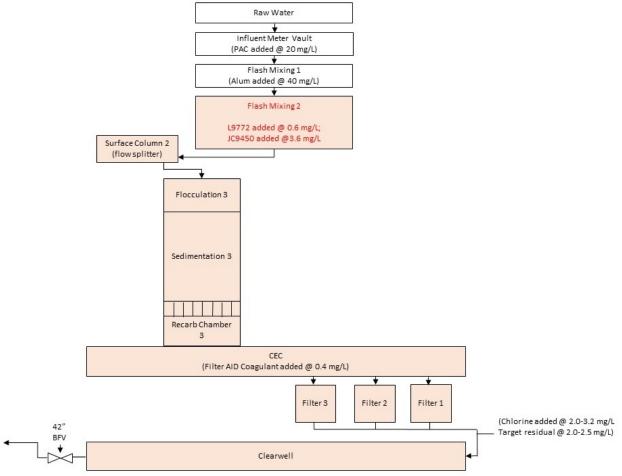


Figure 3 - Proposed Full Scale Testing of JC9450

Plant Preparation and Testing

Based on the lessons learned at SSWTP¹ and the manufacturer's recommendations, GWD will prepare the plant for the full scale testing to prevent potential operational upsets during the two-week testing period. The plant preparation and testing will include the following steps:

1. <u>Clean flocculation and sedimentation basins</u>. GWD will take out Treatment Train 3 (see Figure 3) out of service approximately two weeks prior to full scale testing. Operations staff will clean the flocculation and sedimentation basins (i.e., treatment train) to remove as much organic material and sludge from the basins as possible. The basins will be kept dry for approximately 10 days to prevent algae or other organic material built up that may cause upsets to downstream filters. Figure 6 shows a picture of cleaned treatment train.

¹ Based on telephone conversation with SSWTP staff, GWD understands that SSWTP experienced high filter turbidity during the full scale testing of JC9450. Introducing JC9450 to the plant without prior filter cleaning is thought to have caused an excessive load of algae and other organic matter from the upstream Actiflo[®] process on the filters, which, in turn, resulted increased turbidity.

- 2. <u>Condition filters</u>. Three filters will also be cleaned using chlorine at high concentrations (super chlorination) to remove as much organic materials and particles from the filters. Attachment 8 includes filter preparation procedures.
- 3. <u>Set up a separate chemical storage and feed system for JC9450</u>. JC9450 will be ordered in 250-gallon Intermediate Bulk Containers (IBC) and will be stored in accordance with the JC9450 Safety Data Sheet (see Attachment 2), which has similar handling and storage requirements as sodium hypochlorite. The chemical will be stored within an 860-gallon containment area to capture any run off, leaks or spills. The containment area is equipped with a drain to where the chemical can be neutralized and discharged to the sludge drying beds without environmental spills. Figure 4 shows the containment area, the existing poly tank shown in the picture will be removed and replaced with the IBC. The containment area will also house two new chemical metering pumps dedicated to JC9450.

The IBC will be fitted with a quick connect valve to aid the changeover of chemical IBC's. A separate chemical feed system will be setup for manual operation. The metering pumps setpoint can be changed to allow adequate dose to accommodate any changes in the plant flow. The chemical metering pump setpoints must be changes following the tables in Attachment 7. Figure 5 shows the JC9450 chemical feed system set up that will consist of two Pulsafeeder pumps that discharge to a common header. The common header will be connected to an existing SHC feed mag meter that is linked to the plant SCADA. This will allow operators to monitor feed flow rates and set alarm limits for malfunctioning pumps or underfeeding situations (See Attachment 9). Alternatively, JC9450 can be fed into Flash Mix 2 through three new chemical feed lines. This will allow GWD to immediately switch back to chlorine if JC9450 does not perform as anticipated.

- 4. Establish baseline water quality parameters. As JC9450 does not leave a measurable residual in the water, the best way to monitor the presence of JC9450 is to track changes by monitoring ORP. A baseline including ORP will be developed prior to the addition of JC9450. ORP values will be monitored before and during JC9450 addition to the water using a mobile ORP monitor (MOM) that will allow for movement around the plant. MOM will be linked to the plant SCADA network, which will facilitate real time ORP trending. CDMWTP Operators will be able to track ORP changes and compare the values with historical data. Figure 7 shows the MOM setup and the various parts of the setup. Throughout the test duration, all routine plant monitoring activities will continue. This approach will provide daily records and immediate attention to any changes and actions necessary to stop or continue the test.
- 5. Introduce JC9450 gradually rather than suddenly. GWD will take precautionary measures to introduce JC9450 to Flash Mix 2. The treatment train prepared for the testing will be filled two days before the introduction of JC9450, during which the treatment train will be setup to run on one treatment train and three conditioned filters. Once the operating conditions are stabled, JC9450 will be slowly introduced. During the two-day transition, SHC dosing will be reduced by half dose and

JC9450 dose will be increased by half dose to finally switch over from SHC to 5 mg/L of JC945. This dose rate is similar to the dose that was used at SSWTP.

At the conclusion of the test, the JC9450 feed system will be shut off, and the chlorine feed will be resumed allowing the plant normal operations.

Figure 4 – Chemical Storage Area and Containment Area for JC9450

Figure 5 – Chemical Feed Skid

Figure 6 – A drained and cleaned treatment basin

Figure 7 – Mobile ORP Monitor (MOM)

JC9450 Chemical Introduction

The full scale plant test will commence slowly as a gradual changeover from sodium hypochlorite to JC9450, CDMWTP Operators will fill treatment train #3 (see Figure 3) and deliver treatment chemicals to the water per the standard operations manual in the same manner that sodium hypochlorite has been historically delivered. If turbidity and ORP remain stable and if no visual signs of upset appear, flow will be transitioned from filters 4, 5, and 6 to pre-conditioned filters 1, 2, and 3. Once the treatment train is fed with JC9450 only, fine tuning the JC9450 dose will begin. During this time, the plant flow may be increased steadily up to 6 MGD or the maximum customer demand so that any potential changes to turbidity or ORP can be detected or visual signs of upset observed and addressed quickly. Increased clear well chlorine demand will be monitored which would indicate that the pre-oxidant is not fully oxidizing organic matter and minerals.

Full Scale Plant Testing Schedule

GWD has tentatively scheduled the full scale plant test to occur January 10 through January 24, 2018. Plant preparation is expected to start on December 28, 2017. Table 3 outlines the plant activities.

Step	Task	Description
Task 1	. Empty Treatment Train In S	ervice
1.01	Day 1 - Commence filling the treatment train currently out of service	Fill the treatment train currently out of service, ensure that chlorine is being added to the treatment train as being filled.
1.02	Day 2 - Continue running on chlorine	Keep the treatment train being dosed with chlorine, and allow the 3 filters in service to match the pace of the treatment train.
1.03	Day 2 – Monitor treatment parameters	Treatment operator to monitor treatment parameters, making sure the treatment system is stable and ready to accept the chemical change. Chemical change not to happen until the treatment operator has verified stability.
Task 2	. Full Scale Plant Test - JC945	
2.01	Day 3 – Reduce Chlorine Dose by 50%. Increase JC9450 Dose by 50%.	Treatment operator to reduce the chlorine dose at Flash Mix 2 by 50%, while commencing the feed of JC9450 to 50% of the recommended dose.
2.02	Day 4 – Reduce Chlorine dose to 0%, Increase JC9450 Dose to 100%	Treatment operator to reduce the chlorine dose to the head of the plant to 0%, while commencing the feed of JC9450 to 100% of the recommended dose.
2.03	Day 5 – Continue Dosing JC9450 at the recommended Dose	Treatment operator to monitor treatment parameters throughout the JC9450 testing period.
Task 3	. Full Scale Plant Test - JC945	0 Chemical Testing Completion
3.01	Day 14 – Reduce the JC9450 slowly over the course of the day and return to Chlorine Dosing	JC9450 should be backed down slowly while simultaneously re- introducing chlorine into the treatment system. The following dosing percentages should be used as guidelines: Hour 1 - JC9450 80%, Chlorine 20% Hour 2 – JC9450 60%, Chlorine 40% Hour 3 – JC9450 40%, Chlorine 60% Hour 4 – JC9405 20%, Chlorine 80% Hour 5 – JC9450 0%, Chlorine 100%
3.02	Monitoring of Treatment Parameters	Monitoring of treatment parameters shall be undertaken by the treatment operator.

Table 3 – Plant Preparation	and Full Scale Plant	Testing Activities	and Schedules

Water Quality Sampling Plan

This sampling plan has been developed specifically for the two-week testing period to detect any adverse water quality changes and/or improvements on the plant treatment processes. The TTHMs will be monitored as well as any visual changes in the settling of contaminants in the treatment train designated for JC9450 testing. In addition, testing will be performed to simulate TTHM formation potential in the distribution system at the end of the two week testing.

The sampling plan targets the main plant streams, including plant influent, plant effluent and intermittent streams as listed in Table 4. Additionally, water quality and process monitoring will continue to be monitored routinely per the plant operational plan during the two-week testing period. Specifically, the plant monitoring will focus on daily inspection of floc sizes in the flocculation basins and settlement of particles and flocs in the sedimentation basin, field measurement of key indicators such as pH, oxidation/ reduction potential (ORP), dissolved oxygen (DO) and UVA, and online and continuous monitoring of filter effluent turbidity, filter head loss and filter runtime facilitated through the plant SCADA System.

Sample ID	Sample Location	Constituent	Field/ Lab Analysis	Sample Frequency	Sample Type
		pH, ORP, temp, DO, chlorine residual, UVA	Field	Daily	Grab & On-line
1	Plant Influent	turbidity, alkalinity, TOC, DOC, UVA, chlorine residual, conductivity, TTHM, LSI <i>pH, odor, color, iron, manganese,</i> <i>aluminum, chloride, sulfate, bromide,</i> <i>ammonia, nitrite, nitrate HAA9*</i>	EEA Lab	Refer to Sampling Schedule	Grab
	Flash Mix 1 • PAC is added	pH, ORP, temp, DO, chlorine residual, UVA	Field	Daily	Grab & On-line
2	upstream of Flash Mix 1 • Alum is added	AI, TTHM, TOC, DOC, UVA	EEA Lab	Refer to Sampling Schedule	Grab
	Flash Mix 2	pH, ORP, temp, DO, chlorine residual,	Field	Daily	Grab &
3	 Cationic Polymer added JC9450 added 	UVA TTHM, TOC, DOC, UVA, odor, color total chlorine, chlorine residual*	EEA Lab	Daily	On-line Grab
	Flocculator 3	pH, ORP, temp, DO, chlorine residual	Field	Daily	Grab & On-line
4		TTHM, TOC, DOC, UVA total chlorine, chlorine residual, HAA9*	EEA Lab	Daily	Grab
5	Sedimentation	pH, ORP, temp, DO, chlorine residual	Field	Daily	Grab & Online
5	Basins 1 &4 ahead of Launders	TTHM, TOC, DOC, UVA total chlorine, chlorine residual*	EEA Lab	Daily	Grab
6	Clear Effluent Channel (CEC)	pH, ORP, temp, DO, chlorine residual, UVA	Field	Daily	Grab & On-line
6	 Flocculant Aid is added 	turbidity, alkalinity, TTHM, TOC, DOC, UVA, odor, color	EEA Lab	Daily	Grab
7A, 7B,	Top of Filters (3 out	pH, Temp, DO, chlorine residual, UVA and SCADA data	Field	Daily	Grab & On-line
7C	of 6 filters)	turbidity, TOC, DOC, UVA	EEA Lab	Daily	Grab

|--|

Sample			Field/ Lab	Sample	Sample
ID	Sample Location	Constituent	Analysis	Frequency	Туре
8A, 8B,	Filter EffluentChlorine is added	pH, Temp, DO, chlorine residual, UVA and SCADA	Field	Daily	Grab & On-line
8C	at CT tank	turbidity, TOC, DOC, UVA	EEA Lab	Daily	Grab
		pH, ORP, Temp, DO, chlorine residual, UVA	Field	Daily	Grab & On-line
9	Clear Well Effluent	turbidity, alkalinity, TOC, DOC, UVA, chlorine residual, conductivity, TTHM, LSI <i>pH, odor, color, iron, manganese,</i> <i>aluminum, chloride, sulfate, bromide,</i> <i>ammonia, nitrite, nitrate, HAA9*</i>	EEA Lab	Daily	Grab
10	Reclaimed Water	pH, chlorine residual, UVA	Field	Once	Grab
		THM, TOC, DOC, UVA, chlorine residual	EEA Lab	Once	Grab

Notes:

*Constituents will be only measured once.

EEA Lab: GWD Contracting Laboratory Eurofins Eaton Analytical (ORELAP 4034)

Plant Sample Location Map

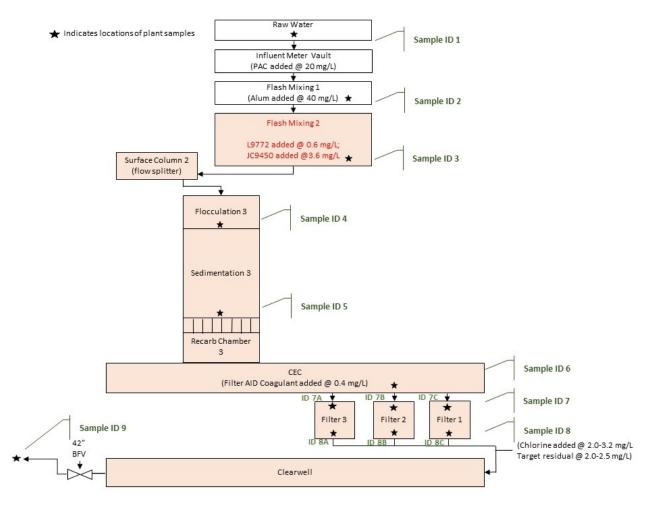


Figure 8 - Sample Location Map

Water Quality Sampling Schedule and Frequency

The plant influent and effluent will be sampled daily over two days prior to adding JC9450 to create a baseline. Table 5 shows the sampling dates, locations and frequency.

Date	Sample ID	Frequency
Jan 8-9, 2018	Plant Preparation	
Jan 8/2018	1, 9	Once
Jan 9/2018	1, 9	Once
Jan 9/2018	10	Once
Jan 10/2018	Commence JC9450 Two	Neek Testing
Jan 10/2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Twice, immediately after JC9450 addition and 8
	8A, 8B, 8C, 9	hrs after
Jan 11/2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 15/2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 16/2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 17, 2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 18, 2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 22, 2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 23, 2018	2, 3, 4, 5, 6, 7A, 7B, 7C,	Once
	8A, 8B, 8C, 9	
Jan 24, 2018	9	Collect 12 sample for Distribution System
		Simulations
Jan 24, 2018	Two-Week Testing Ends	

Table 5 – Sampling Frequency

Safety

In case of a failure or treatment upset, the plant staff can switch the JC9450 feed to chlorine feed within a short time and allow for water production to resume quickly. Additionally, GWD will keep the remaining treatment trains and three filters isolated from the JC9450 treatment train and ready in a standby mode for a switch over if needed. As a backup, groundwater wells will be online ready to operate to ensure an adequate water supply in case any issues rise during the testing of JC9450.

Customer safety is the utmost priority of the District. The introduction of JC9450 will be taken slowly and changes in the treatment train will be analyzed through certified laboratory testing to ensure the water leaving the treatment plant is in compliance with all State and Federal regulations. The full scale plant testing is scheduled to operate over a two week period, with treated groundwater as a back supply. The District will ensure that customers will not be see adverse effects on water quality if testing proves negative. Engineered procedures are in place to ensure the smooth transition from sodium hypochlorite to the JC9450 chemical.

The safety of all District personnel working who will be working with this new chemical is extremely important. The treatment operators are adequately trained and licensed to work around the plant and will be expected to adhere to safe chemical handling procedures and handle this chemical with care to avoid any spill or harm to themselves and others. The Operators will be required to handle the product in the same manner as sodium hypochlorite, wear appropriate PPE and perform appropriate lock out and tag out when transferring chemical containers and maintaining metering pumps and other associated equipment.

Attachment 1 - JC9450 Safety Data Sheet

SAFETY DATA SHEET JENFITCH, LLC

Date Printed: 3/07/2016 Date Issued: 10/9/2015 Date Revised: 5/22/2015 Revision No: 1

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT CODE: JC 9450

PRODUCT TRADE NAME: JC 9450 COMMON NAMES/SYNONYMS: JC 9450 ROS CATEGORY: WTP RECOMMENDED USE: JC 9450 WATER TREATMENT, For industrial use only, refer to label and technical data sheet or call number below MANUFACTURER

JENFITCH, LLC 712 BANCROFT ROAD SUITE 805 WALNUT CREEK, CA 94598 PHONE: 925-289-35598 FAX: 925-289-0094 **E-Mail :** <u>charles@jenfitch.com</u>

Emergency Contact: Charles Jennings Emergency Phone: 925-289-3559 Alternate Emergency Phone: 800-644-3518 24 HR. EMERGENCY TELEPHONE NUMBERS 800-644-3518

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

PHYSICAL APPEARANCE: Deep red-purple liquid

IMMEDIATE CONCERNS: No applicable data available

POTENTIAL HEALTH EFFECTS

EYES: Causes severe irritation (tears, blurred vision and redness) May result in permanent eye damage.

SKIN: Causes severe skin irritation and tissue damage.

INGESTION: May cause nausea and vomiting. May cause irritation to the mouth, throat and stomach.

INHALATION: May cause physical discomfort to the respiratory tract.

UNCLASSIFIED HAZARDS: WARNING!! DO NOT MIX THIS PRODUCT WITH ACIDS

SIGNAL WORD: Caution

Potential Carcinogens as listed by OSHA, IARC, or NTP: NONE

OSHA HCS Status This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).

GHS Pictogram:

Hazard Statement(s)

Code	Statement
11000	

H332 Harmful if inhaled

- H302 Harmful if swallowed
- H312 Harmful in contact with skin
- H314 Causes severe skin burns and eye damage
- H318 Causes serious eye damage

GHS Chapter	Category
Acute toxicity, oral (chapter 3.1)	4
Acute toxicity, dermal (chapter 3.1)	4
Skin corrosion/irritation (chapter 3.2)	1A, 1B, 1C
Serious eye damage/eye irritation (chapter 3.3)	1
Acute toxicity, inhalation (chapter 3.1)	4

Precautionary Statement(s)	
P202	Do not handle until all safety precautions have been read and understood.
P264	Wash skin thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P301+ P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P305+ P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P309+ P311	IF exposed or if you feel unwell: Call a POISON CENTER or doctor/physician.
P501	Dispose of contents/ container to an approved waste disposal plant.

3. COMPOSITION / INFORMATION ON INGREDIENTS					
	Chemical Name	Common Names	CAS	Weight %	
	Mineral Oxychlorides	Mineral Oxychlorides	1332-17-8	9.0-12.5 %	

4. FIRST AID MEASURES

COMMON SYMPTOMS OF OVEREXPOSURE: No Applicable data available

EYES: Immediately flush with water for at least 15 minutes or until the chemical is removed. Get medical attention! **SKIN:** Wash off immediately with soap and water. If clothing is contaminated, remove and launder before reuse.

INGESTION: Do not induce vomiting. Never give anything by mouth to an unconscious person. Get immediate medical attention.

INHALATION: Move to fresh air. If not breathing, administer artificial respiration. Get immediate medical attention. **NOTES TO PHYSICIAN:** Follow usual and customary procedures

ADDITIONAL INFORMATION: No Applicable data available

COMMENTS: No Applicable data available

5. FIRE FIGHTING MEASURES

FLASH POINT AND METHOD: No applicable data available

FLAMMABLE LIMITS: LEL : No applicable data available UEL: No applicable data available

GENERAL HAZARD: As with any chemical fire, combustion products of unknown toxicity are always possible.

EXTINGUISHING MEDIA: Carbon dioxide, dry chemical, foam or water spray.

FIRE FIGHTING EQUIPMENT: Vapors and fumes may be irritating and toxic. Firefighters should wear self No applicable data available contained breathing apparatus and full fire No applicable data available fighting turnout gear.

SENSITIVE TO STATIC DISCHARGE: No applicable data available

COMMENTS: Do not use Mono Ammonium Phosphate (MAP) fire extinguishers. May cause explosion with release of toxic gases.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: Absorb spilled liquid in a suitable material. Sweep or vacuum material into disposal containers.
 LARGE SPILL: Absorb spilled liquid in a suitable material. Sweep or vacuum material into disposal containers.
 EMERGENCY PROCEDURES: For hazardous waste regulations call 800-424-9346, the RCRA Hotline. Personal precautions, protective equipment and emergency procedures: Evacuate area. Keep upwind of spill. Refer to section 7, Handling, for additional precautionary measures. Only trained and properly protected personnel must be involved in clean-up operations. Ventilate area of leak or spill. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and personal protection.

GENERAL PROCEDURES: Do not allow spilled material to mix with any acids. Contain spilled material by diking with nonflammable diking materials.

RELEASE NOTES: Collect as much as possible in a clean container for reuse (if not contaminated) or disposal (if contaminated). Prevent from entering into soil, ditches, sewers, waterways and/or ground water. See section 12 Ecological information.

SPECIAL PROTECTIVE EQUIPMENT: Isolate area. Use appropriate safety equipment. For additional information, refer to section 8, Exposure Controls and Personal Protection.

COMMENTS: See also section 13 for disposal information.

7. HANDLING AND STORAGE

HANDLING: Use good industrial practices when handling. Avoid eye, skin, and clothing contact. Do not inhale mist or vapors. Do not taste or swallow. Use only with adequate ventilation.

STORAGE: Do not store near acids! Keep container closed when not in use. Avoid elevated and freezing temperatures.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Chemical Name	OSHA PEL	OSHA STEL	ACGIH TWA	ACGIH STEL
Mineral Oxychlorides	NE	NE	NE	NE

ENGINEERING CONTROLS: Work in well ventilated areas. Do not breathe vapors or mist. Ensure that existing ventilation is sufficient to prevent the circulation and/or accumulation of vapors in the air.

PERSONAL PROTECTIVE EQUIPMENT:

EYES AND FACE: Eye protection such as chemical splash goggles and/or face shield must be worn when possibility exists for eye contact due to splashing or spraying liquid, airborne particles, or vapor.

SKIN: Neoprene rubber gloves and suit should be worn to prevent repeated or

prolonged contact with the liquid. Wash contaminated clothing prior to

reuse.

RESPIRATORY: Have self-contained breathing apparatus (SCBA), positive pressure,

MSHA/NIOSH (approved or equivalent) available in case of spillage or

equipment failure.

WORK HYGIENIC PRACTICES: Discard contaminated gloves after use. Have eye-wash facilities in the immediate vicinity. Work in adequately ventilated area. Do not breathe vapors or mist. Minimize any contact with any chemical.

COMMENTS: Eye wash station and safety shower should be available in immediate work area. To identify additional

Personal Protective Equipment (PPE) requirements, it is recommended that a hazard assessment, in accordance with the OSHA PPE Standard (29 CFR 1910.132), be conducted before using this product.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance Form: Liquid Appearance Color: Red to Purple Odor: Slight Chlorine Decomposition Temp: above 26.7° C pH-value @ 68 °F: 11.0 – 12.5, Typical Specific Gravity: 1.14-1.22 Boiling Point: Decomposes@ 110°C Flash Point: Not Applicable Flammability: none Ignition temperature: none Support Combustion: no

Page 4 of 7

Auto Igniting: none Danger of explosion: none Explosion Lower Limit: none Explosion Upper Limit: none Vapor pressure @ 68 °F: 12.1 mm Hg Relative Density: 1.14-1.22 Vapor Density: 2.61 (air= 1) Evaporation Rate: Not Determined Solubility in Water: Complete Partition coefficient: no data available Dynamic viscosity: 2.95 cSt @ 20°C, 2.5 cSt @ 30°C. Kinematic viscosity: no data available Organic Content %age: no data available Molecular Weight: 75.4 g/mole Solids Content %age: no data available Other Information: no data available

10. STABILITY AND REACTIVITY

STABILITY: Stable under recommended storage and handling conditions. Product begins to decompose at approximately 26.7°C releasing monoxide gas

REACTIVITY: See sub-sections below.

POLYMERIZATION: Hazardous polymerization is not expected to occur under normal temperatures and pressures. CONDITIONS TO AVOID: Heating will cause decomposition resulting in the release of monoxide gases POSSIBILITY OF HAZARDOUS REACTIONS: Interaction with strong oxidizers, acids or acidic materials. INCOMPATIBLE MATERIALS: Highly reactive or incompatible with the following materials: organic materials, metals, acids, alkalis, oxidizing materials, reducing materials, ammonia, finished petroleum products, paint products. Acid or ammonia contamination will release hazardous gases.

HAZARDOUS DECOMPOSITION MATERIALS: Under normal conditions of storage and uses, hazardous polymerization will not occur

11. TOXICOLOGICAL INFORMATION

SKIN: Skin Corrosion/Irritation: Mildly irritating., Skin Acute Toxicity: Not Determined EYES: Severely irritating. INHALATION: INH-Rat LC₅₀: 3.6 mg/L (4 hr. exposure). INGESTION: Oral Rat LD₅₀: 820 mg/kg CARCINOGENICITY IARC: None of the components of this product are listed as a carcinogen by IARC, NTP, OSHA, or ACGIH. NTP: None of the components of this product are listed as a carcinogen by IARC, NTP, OSHA, or ACGIH. OSHA: None of the components of this product are listed as a carcinogen by IARC, NTP, OSHA, or ACGIH. DERMAL TOXICITY: Dermal Rabbit LD₅₀: > 2,000 mg/kg MUTAGENICITY: Not Determined SENSITIZATION: Not a sensitizer TERATOGENICITY: Not Determined REPRODUCTIVE EFFECTS: Not Determined TARGET ORGAN EFFECTS: Not Determined ADDITIONAL INFORMATION: no additional information.

12. ENVIRONMENTAL INFORMATION				
PRODUCT	TEST	DURATION	ORGANISM TYPE	TEST RESULTS
Same as SDS name	LC ₅₀	4.4 mg/l.	Green Algae	-
Same as SDS name	LC ₅₀	2.1 mg/l.	Water Flea	-
Same as SDS name	LC ₅₀	0.9 mg/l	Bluegill	-
Same as SDS name	LC ₅₀	0.22 mg/l.	Fathead Minnow	-
Same as SDS name	LC ₅₀	8.8mg/l	Rainbow Trout	-

ECOTOXICITY: no applicable data available

BIOACCUMULATION: Not determined

PERSISTENCE DEGRADABILITY: Degradation is expected under aerobic and anaerobic conditions.

MOBILITY: Not determined

ENVIRONMENTAL DATA: In fresh water, reactive oxygen species (ROS) breaks down rapidly into non-toxic compounds when exposed to sunlight. In seawater, ROS declines rapidly.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Dispose of in accordance with national, state and local regulations. It is the waste generator's responsibility to determine if a particular waste is hazardous under RCRA.

EMPTY CONTAINER: Empty Container Warning (Where applicable). Empty Containers may contain residue and can be dangerous. Do not attempt to refill or clean containers without proper instructions. Empty containers should be taken for recycling, recovery or disposal through suitably qualified or licensed contractor and in accordance with governmental regulations.

DISPOSAL INSTRUCTIONS: The generation of waste should be avoided or minimized wherever possible and should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements.

WASTE FROM RESIDUES / UNUSED PRODUCTS: For hazardous waste regulations call 800-424-9346, the RCRA Hotline.

CONTAMINATED PACKAGING: For hazardous waste regulations call 800-424-9346, the RCRA Hotline.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATION) PROPER SHIPPING NAME: NON D.O.T. REGULATED TECHNICAL NAME: Hypochlorite Solutions PRIMARY HAZARD CLASS/DIVISION: Corrosive 8 UN/NA NUMBER: UN 1791, PACKING GROUP: PG II NAERG: N/A LABEL: Corrosive 8 EMS NO: Not Applicable ADDITIONAL INFO: none

15. REGULATORY INFORMATION

UNITED STATES TSCA (TOXIC SUBSTANCE CONTROL ACT) TSCA STATUS: On the inventory, or in compliance with the inventory

Page 6 of 7

US federal regulations
TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)
US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050) no applicable data available
CERCLA Hazardous Substance List (40 CFR 302.4): NO
Superfund amendments and reauthorization act of 1986 (SARA)
SARA 302 Extremely hazardous substance NO
SARA 304 Emergency release notification no applicable data available
SARA 311/312 Hazardous chemical no applicable data available
SARA 313 (TRI reporting) NO
Clean Water Act Section 311 Hazardous Substances (40 CFR 117.3) no applicable data available
Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130):no applicable data available
US state regulations
US. California Proposition 65: NO
US. New Jersey Worker and Community Right-to-Know Act: no applicable data available
US. Massachusetts RTK - Substance List: no applicable data available
US. Pennsylvania RTK - Hazardous Substances: no applicable data available
US. Rhode Island RTK: no applicable data available
Inventory Status:
Europe REACH: On the inventory, or in compliance with the inventory
USA TSCA: On the inventory, or in compliance with the inventory
Canada DSL: On the inventory, or in compliance with the inventory
Australia AICS: On the inventory, or in compliance with the inventory
New Zealand NZIOC: On the inventory, or in compliance with the inventory
Japan ENCS: On the inventory, or in compliance with the inventory
Korea KECI: On the inventory, or in compliance with the inventory
Philippines PICCS: On the inventory, or in compliance with the inventory
China IECSC: On the inventory, or in compliance with the inventory

16. OTHER INFORMATION

TITLE: EHS Management PREPARED BY: JENFITCH, LLC. FIRE: 0 REACTIVITY: 0 HEALTH: 2

MANUFACTURER SUPPLEMENTAL NOTES: no applicable data available

MANUFACTURER DISCLAIMER: The information contained herein is based on data believed to be accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for loss or injury arising out of use of this information or the use of any materials designated. It is the user's responsibility for determining whether the product is suitable for its intended conditions of use.

	Key or legend to abbreviations and a	cronyms used	d in the safety data sheet
ACGIH	American Conference of Government Industrial Hygienists	LD ₅₀	Lethal Dose 50%
AICS	Australia, Inventory of Chemical Substances	LOAEL	Lowest Observed Adverse Effect Level
DSL	Canada, Domestic Substances List	NFPA	National Fire Protection Agency
NDSL	Canada, Non-Domestic Substances List	NIOSH	National Institute for Occupational Safety & Health
CNS	Central Nervous System	NTP	National Toxicology Program
CAS	Chemical Abstract Service	NZIoC	New Zealand Inventory of Chemicals
EC ₅₀	Effective Concentration	NOAEL	No Observable Adverse Effect
EC	Effective Concentration	NOAEL	No Observable Adverse Effect Level
EC ₅₀	Effective Concentration 50%	NOEC	No Observed Effect Concentration
EGEST	EOSCA Generic Exposure Scenario Tool	OSHA	Occupational Safety & Health Administration
EOSCA	European Oilfield Specialty Chemicals Association	PEL	Permissible Exposure Limit
EINECS	European Inventory of Existing Chemical Substances	PICCS	Philippines Inventory of Commercial Chemical Substances
MAK	Germany Maximum Concentration Values	PRNT	Presumed Not Toxic
GHS	Globally Harmonized System	RCRA	Resource Conservation Recovery Act
>=	Greater Than or Equal To	STEL	Short-term Exposure Limit
IC ₅₀	Inhibition Concentration 50%	SARA	Superfund Amendments and Reauthorization Act.
IARC	International Agency for Research on Cancer	TLV	Threshold Limit Value
IECSC	Inventory of Existing Chemical Substances in China	TWA	Time Weighted Average
ENCS	Japan, Inventory of Existing and New Chemical Substances	TSCA	Toxic Substance Control Ac
KECI	Korea, Existing Chemical Inventory	UVCB	Unknown or Variable Composition, Complex Reaction Products, and Biological
<=	Less Than or Equal To	WHMIS	Workplace Hazardous Materials Information System
LC ₅₀	Lethal Concentration 50%		

Attachment 2 - JC9450 Material Analysis Data Sheet

Certificate of Analysis

Product Name: JC 9450 LIQUID OZONE

Bell Chem Stock Number:

Batch Number: BCK287-9450

Manufacture Date: 11/28/17

	SPECIFICATIONS	ANALYSIS
Appearance	Slight lavender color, Slight Odor	
рH	11.0-12.5	11.86
Specific Gravity	1.14-1.24	1.16

This batch meets the specifications for this Bell Chem product.

Bell Chem Corp. certifies, warrants and guarantees the products sold or delivered by us shall be asfe, complies with, will not have any adverse effect and are appropriate for their intended use when used according to label directions and/ or Good Manufacturing Practices. The intended use hall not conflict with the Federal Food, prog. & Constead: Act or any Federal, State of Local povernment regulations or restrictions. All of our Cuna brand of cleaners and sanitares contain ingredients that are suitable for use on food processing surfaces. All cleaners should be followed by a thorough potable water rinse. Sanitares should be used in accordance with the label as approved by E P.A. Specific instructions are found on each product's tech data theset.

Attachment 3 - JC9450 NSF Listing

10/8/2017

Listing Category Search Page | NSF International

The Public Health and Safety Organization

NSF Product and Service Listings

These NSF Official Listings are current as of **Sunday**, **October 08**, **201**7 at 12:15 a.m. Eastern Time. Please <u>contact NSF International</u> to confirm the status of any Listing, report errors, or make suggestions.

Alert: NSF is concerned about fraudulent downloading and manipulation of website text. Always confirm this information by clicking on the below link for the most accurate information: http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060&

NSF/ANSI 60 Drinking Water Treatment Chemicals - Health Effects

Jenfitch, LLC

712 Bancroft Road Suite 805 Walnut Creek, CA 94598 United States 800-644-3518 925-289-3559 Visit this company's website (http://www.jenfitch.com)

Facility: # 3 USA

Missellaneous Treatment Chemical [CI]

Miscellaneous Treatment Chemical [CL]		
Trade Designation	Product Function	Max Use
JC 9430[1]	Algicide	37mg/L
	Bactericide	
	Corrosion & Scale Control	
	Descaler	
	Disinfection & Oxidation	
	Molluscicide	
	Other	
JC 9430	Reverse Osmosis Antiscalant	84mg/L
JC 9430 ROS	Reverse Osmosis Antiscalant	84mg/L
JC 9430 ROS[1]	Algicide	37mg/L
	Bactericide	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

0/8/2017	Listing Category Search Page NSF International	
	Corrosion & Scale Control	
	Descaler	
	Disinfection & Oxidation	
	Molluscicide	
	Other	
JC 9450	Reverse Osmosis Antiscalant	84mg/L
JC 9450[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9450 BIOFILM REMOVER	Reverse Osmosis Antiscalant	84mg/L
JC 9450 BIOFILM REMOVER[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9450 ROS	Reverse Osmosis Antiscalant	84mg/L
JC 9450 ROS[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9465	Reverse Osmosis Antiscalant	84mg/L
JC 9465[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Corrosion & Scale Control Descaler	
	Corrosion & Scale Control Descaler Algicide	
10 0 177	Corrosion & Scale Control Descaler Algicide Bactericide	0
JC 9475	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant	84mg/L
JC 9475 JC 9475[1]	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation	84mg/L 37mg/L
	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation Molluscicide	
	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation Molluscicide Other	
	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation Molluscicide Other Corrosion & Scale Control	
	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation Molluscicide Other Corrosion & Scale Control Descaler	
	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation Molluscicide Other Corrosion & Scale Control Descaler Algicide	
	Corrosion & Scale Control Descaler Algicide Bactericide Reverse Osmosis Antiscalant Disinfection & Oxidation Molluscicide Other Corrosion & Scale Control Descaler	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/8/2017	Listing Category Search Page NSF International	
TC 9430[1]	Algicide	37mg/L
	Bactericide	
	Corrosion & Scale Control	
	Descaler	
	Disinfection & Oxidation	
	Molluscicide	
	Other	
TC 9430 ROS[1]	Algicide	37mg/L
	Bactericide	
	Corrosion & Scale Control	
	Descaler	
	Disinfection & Oxidation	
	Molluscicide	
	Other	
TC 9450	Reverse Osmosis Antiscalant	84mg/L
TC 9450[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9450 ROS	Reverse Osmosis Antiscalant	84mg/L
TC 9450 ROS[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9465	Reverse Osmosis Antiscalant	84mg/L
TC 9465[1]	Disinfection & Oxidation	37mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Algicide	
Z-REMOVAL2	Reverse Osmosis Antiscalant	84mg/L

[1] This product functions to aid with the coagulation and flocculation process by oxidizing compounds in solution and creating additional particulates to be flocked.

[CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/8/2017

Listing Category Search Page | NSF International

dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

Miscellaneous Water Supply Products[2] [CL]		
Trade Designation	Product Function	Max Use
JC 9430	Membrane Cleaner	NA
	Reverse Osmosis Membrane Biocide	
	Well Cleaning Aid	
JC 9430 ROS	Membrane Cleaner	NA
	Reverse Osmosis Membrane Biocide	
	Well Cleaning Aid	
JC 9450	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450 BIOFILM REMOVER	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9465	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
IC 9475	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
FC 9430	Membrane Cleaner	NA
	Reverse Osmosis Membrane Biocide	
	Well Cleaning Aid	
FC 9430 ROS	Membrane Cleaner	NA
	Reverse Osmosis Membrane Biocide	
	Well Cleaning Aid	
rc 9450	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
ГС 9450 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
ГС 9465	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
Z-REMOVAL2	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/8/2017

Listing Category Search Page | NSF International

- [2] This product is designed to be used off-line and flushed put prior to using the system for drinking water, following manufacturer's use instructions.
- [CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

Facility : #4 USA

Miscellaneous Treatment Chemical [CL]		
Trade Designation	Product Function	Max Use
JC 9430	Reverse Osmosis Antiscalant	84mg/L
JC 9430[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9430 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9430 ROS	Reverse Osmosis Antiscalant	84mg/L
JC 9450[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9450	Reverse Osmosis Antiscalant	84mg/L
JC 9450 BIOFILM REMOVER[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/8/2017	Listing Category Search Page NSF International	
JC 9450 BIOFILM REMOVER	Reverse Osmosis Antiscalant	84mg/L
JC 9450 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9450 ROS	Reverse Osmosis Antiscalant	84mg/L
JC 9465	Reverse Osmosis Antiscalant	84mg/L
JC 9465[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	0
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9475[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	- 18/
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9475	Reverse Osmosis Antiscalant	84mg/L
TC 9430	Reverse Osmosis Antiscalant	84mg/L
TC 9430[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9430 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9430 ROS	Reverse Osmosis Antiscalant	84mg/L
TC 9450[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/8/2017	Listing Category Search Page NSF International	
	Descaler	
	Algicide	
	Bactericide	
TC 9450	Reverse Osmosis Antiscalant	84mg/L
TC 9450 ROS	Reverse Osmosis Antiscalant	84mg/L
TC 9450 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
Z-REMOVAL2	Reverse Osmosis Antiscalant	84mg/L

- [1] This product functions to aid with the coagulation & flocculation process by oxidizing compounds in solution and creating additional particulates to be flocked.
- [CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

Trade Designation	Product Function	Max Use
JC 9430	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9430 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450 BIOFILM REMOVER	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9465	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9475	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9430	Well Cleaning Aid	NA

Miscellaneous Water Supply Products[2] [CL]

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

7/12

10/8/2017	Listing Category Search Page NSF International	
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9430 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9450	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9450 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9465	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
Z-REMOVAL2	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	

- [2] This product is designed to be used off-line and flushed out prior to using the system for drinking water, following manufacturer's use instructions.
- [CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

Facility: #5 USA

Miscellaneous Treatment Chemical [CL]		
Trade Designation	Product Function	Max Use
JC 9430	Reverse Osmosis Antiscalant	84mg/L
JC 9430[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9430 ROS	Reverse Osmosis Antiscalant	84mg/L
JC 9430 ROS[1]	Disinfection & Oxidation	84mgL
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

8/12

10/8/2017	Listing Category Search Page NSF International	
	Algicide	
	Bactericide	
JC 9450	Reverse Osmosis Antiscalant	84mg/L
JC 9450[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9450 BIOFILM REMOVER[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9450 BIOFILM REMOVER	Reverse Osmosis Antiscalant	84mg/L
JC 9450 ROS	Reverse Osmosis Antiscalant	84mg/L
JC 9450 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	0
JC 9465[1]	Disinfection & Oxidation Molluscicide	84mg/L
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9465	Reverse Osmosis Antiscalant	84mg/L
JC 9475[1]	Disinfection & Oxidation	84mg/L
0009473[4]	Molluscicide	04
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
JC 9475	Reverse Osmosis Antiscalant	84mg/L
TC 9430	Reverse Osmosis Antiscalant	84mg/L
TC 9430[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/8/2017	Listing Category Search Page NSF International	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9430 ROS	Reverse Osmosis Antiscalant	84mg/L
TC 9430 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9450[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9450	Reverse Osmosis Antiscalant	84mg/L
TC 9450 ROS	Reverse Osmosis Antiscalant	84mg/L
TC 9450 ROS[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9465[1]	Disinfection & Oxidation	84mg/L
	Molluscicide	
	Other	
	Corrosion & Scale Control	
	Descaler	
	Algicide	
	Bactericide	
TC 9465	Reverse Osmosis Antiscalant	84mg/L
Z-REMOVAL2	Reverse Osmosis Antiscalant	84mg/L

- [1] This product functions to aid with the coagulation and flocculation process by oxidizing compounds in solution and creating additional particulates to be flocked.
- [CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

10/12

10/8/2017

Miscellaneous Water Supply Products[2] [CL]		
Trade Designation	Product Function	Max Use
JC 9430	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9430 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450 BIOFILM REMOVER	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9450 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9465	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
JC 9475	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9430	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9430 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9450	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9450 ROS	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	
TC 9465	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Well Cleaning Aid	
Z-REMOVAL2	Well Cleaning Aid	NA
	Reverse Osmosis Membrane Biocide	
	Membrane Cleaner	

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

11/12

ſ

10/8/2017

Listing Category Search Page | NSF International

- [2] This product is designed to be used off-line and flushed put prior to using the system for drinking water, following manufacturer's use instructions.
- [CL] The residual levels of chlorine (hypochlorite ion and hypochlorous acid), chlorine dioxide, chlorate ion, chloramine and disinfection by-products shall be monitored in the finished drinking water to ensure compliance to all applicable regulations.

Number of matching Manufacturers is 1 Number of matching Products is 110 Processing time was 0 seconds

http://info.nsf.org/Certified/PwsChemicals/Listings.asp?Company=C0165759&Standard=060

Attachment 4 - JC9450 Jar Tests

								A PAC					\rightarrow
	<u>b</u> G	715	2000 ml	202	0:211		Notes	Senta, 20ml PAC					
	Analyst: DA DG	Sample Time: 0715	Jar Sample Size: 2000 ml	ACCING THE THE PARTY OF THE PAR	Ending Temperature (°C): 21.1		TTHMMP (I/g/I)	170	120	120	120	130	130
	Ana	ample T	Jar Sar	Tom:	ng Temp		TOC (mg/l)	4.8	47	47	46	46	46
		S		1010	Endir		(I/вц)	Ĩ	2.1	5.3			U
JC9450 Evaluation Jar Test Worksheet							Manganese (µg/l)	<0.02 0.0057	<0.02 0.014		0.057 0.031 0.0016 7.2	FO.O ZO:O	10.0 Za.02
est Wo		9 MGD	6346	127	2		lron (µg/l)	20.07	<0.02	Z0'0>	0.057	20.02	20.02
n Jar Te		Influent Flow:).2.9 M6D		Delimor Courses 1 347			Chloride (mg/l)	30	28	28	28	62	30
aluatio		Influent F	Alum Source:	Dolymor			Calcium (mg/l)	-79	4	79	83	81	80
9450 Ev						1.5	Alkalinity Calcium Chloride (mg/l) (mg/l) (mg/l)	50	150	150	120	120	120
ΰr							Hq	842	7,52	84%	242	749	06 130 120
		(pre-Cl ₂)	Time	1 min 20 min	60 min		JC9450 (mg/l)	1	7	10	12	20	25
	1	IWTP Raw	RPM	100 30	3.		Polymer Dose (mg/l as neat polymer) (mg/l)		1.0	0.1	0.1	0.	1.0
	Date: 10/25/17	Sample: CDMWTP Raw (pre-Cl ₂)		FM	Settling		Alum Dose (mg/l as Alum)	Control	4	0H	5	40	\$

JC9450JarTest 101917 da

	1/DG	715	Jar Sample Size: <u>2000 ml</u>	Starting Temperature (°C): <u>ヱの.</u>	Notes	3 m Ci	B				
	Analyst: DA /DG	Time:	mple Size	perature (perature (TTHMMP (hg/l)	2	01	130	£	140	150
	Ana	Sample Time: (Jar Sa	ng Tem ng Tem	TOC T (mg/l)	47	46	45	45	4.5	44
		S		Starti Endi	(I/Brl)	高	2.2	6.2	2	26	4
Inslied		Q			Manganese (µg/l)	O.OH	HO.O	<0.02 0.013	<0.02 0.013	0.012	0.011
		12.9 MGD	346	L(23+7	lron (μg/l)	20:02	40'0 20'0>	<0.02	<0.02	<0.02	<0.02
l Jar I(Alum Source: LC34C	Source:	Chloride (mg/l)	29	27	28	28	7629 KO.02 0.012	31
aluatio		Influent Flow:_	Alum Sot	Polymer Source:	Calcium (mg/l)	120	8	62	79	78	80
JU3430 EVAIUATION JAF LEST WORKSNEET					Alkalinity Calcium Chloride (mg/l) (mg/l)	140	150	150	140	140	150
S		а. З			Æ	042	7.34	7.36	7.40	1+1-2	147
		(pre-Cl ₂)	Time	1 min 30 min 60 min	JC9450 (mg/l)	I	2	0	15	20	25
	E	IWTP Raw	RPM	- 30	Polymer Dose (mg/l as neat polymer)	-	1.0	1.0	I.O	1,0	0.
	Date: 10/25/17	Sample: CDMWTP Raw (pre-Cl ₂)		FM Flocculation Settling	Alum Dose (mg/l as Alum)	Control	40	40	40	40	5

45

JC9450JarTest 101917 da

Attachment 5 – JC9450 Jar Test Results From Eurofins

eurofins 🔅

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

AT-1807

Laboratory Report

for

Goleta Water District 4699 Hollister Avenue Goleta, CA 93117 Attention: Dale Armstrong Fax: 805-968-1844

Date of Issue 11/03/2017 ado n EUROFINS EATON ANALYTICAL, INC.

MP6E: Alicia Del Carlo Project Manager

Report:695546 Project: SPECIAL Group: JC 9450 Jar Test PO#: 091213 exp 063014 NTE 75K

* Accredited in accordance with TNI 2009 and ISO/IEC 17025:2005.

Laboratory certifies that the test results meet all TNI 2009 and ISO/IEC 17025:2005.
 Laboratory certifies that the test results meet all TNI 2009 and ISO/IEC 17025:2005 requirements unless noted under the individual analysis.
 Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.
 Test results relate only to the sample(s) tested.

Page 1 of 28 pages

Eaton Analytical

State	Certification Number	State	Certification Number	
Alabama	41060	Michigan	9906	
Arizona	AZ0778	Mississippi	Certified	
Arkansas	Certified	Montana	Cert 0035	
California-Monrovia- ELAP	2813	Nebraska	Certified	
California-Colton- ELAP	2812	Nevada	CA00006-2016	
California-Folsom- ELAP	2820	New Hampshire *	2959	
California-Fresno- ELAP	2966	New Jersey *	CA 008	
Colorado	Certified	New Mexico	Certified	
Connecticut	PH-0107	New York *	11320	
Delaware	CA 006	North Carolina	06701	
Florida *	E871024	North Dakota	R-009	
Georgia	947	Oregon (Primary AB) *	ORELAP 4034	
Guam	Guam 17-005R		68-565	
Hawaii	Certified	Puerto Rico	Certified	
Idaho	Certified	Rhode Island	LAO00326	
Illinois *	200033	South Carolina	87016	
Indiana	C-CA-01	South Dakota	Certified	
Iowa - Asbestos	413	Tennessee	TN02839	
Kansas *	E-10268	Texas *	T104704230-16-11	
Kentucky	90107	Utah *	CA000062017-11	
Louisiana *	LA170009	Vermont	VT0114	
Maine	CA0006	Virginia *	460260	
Maryland	224	Washington	C838	
Commonwealth of Northern Marianas Is.	MP0004	EPA Region 5	Certified	
Massachusetts	M-CA006	Los Angeles County Sanitation Districts	10264	

STATE CERTIFICATION LIST

* NELAP/TNI Recognized Accreditation Bodies

Eurofins Eaton Analytical, Inc.

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629 T | 626-386-1100 F | 626-386-1101 www.EatonAnalytical.com

Page 2 of 28 pages

SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Environ- mental (Drinking Water)	Environ- mental (Waste Water)	Water as a Component of Food and Bev/Bev/ Bottled Water	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Environ- mental (Drinking Water)	Environ- mental (Waste Water)	Water as a Component of Food and Bev/Bev Bottled Water
1,4-Dioxane	EPA 522	×		x	Hexavalent Chromium	EPA 218.7	x		x
2,3,7,8-TCDD	Modified EPA 1613B	×		x	Hexavalent Chromium	SM 3500-Cr B		x	
Acrylamide	In House Method (2440)	x		x	Hormones	EPA 539	x		×
Alkalinity	SM 2320B	x	×	x	Hydroxide as OH Calc.	SM 2330B	x		x
Ammonia	EPA 350.1		x	×	Kjeldahl Nitrogen	EPA 351.2		x	
Ammonia	SM 4500-NH3 H		x	x	Legionella	CDC Legionella	x		x
Anions and DBPs by IC	EPA 300.0	x	x	x	Mercury	EPA 245.1	x	x	×
Anions and DBPs by IC	EPA 300.1	×		x	Metals	EPA 200.7 / 200.8	x	x	x
Asbestos	EPA 100.2	×	x		Microcystin LR	ELISA (2360)	x		x
Bicarbonate Alkalinity as HCO3	SM 2320B	×	×	x	NDMA	EPA 521	x		x
BOD / CBOD	SM 5210B		×	x	NDMA	TQ In house method based on EPA 521 (2425)	x		x
Bromate	In House Method (2447)	x		×	Nitrate/Nitrite Nitrogen	EPA 353.2	х	x	×
Carbamates	EPA 531.2	x		x	OCL, Pesticides/PCB	EPA 505	х		×
Carbonate as CO3	SM 2330B	x	x	×	Ortho Phosphate	EPA 365.1	x	x	×
Carbonyls	EPA 556	×		×	Ortho Phosphate	SM 4500P E			х
COD	EPA 410.4 / SM 5220D		x		Ortho Phosphorous	SM 4500P E	x		
Chloramines	SM 4500-CL G	×	x	x	Oxyhalides Disinfection	EPA 317.0	x		×
Chlorinated Acids	EPA 515.4	×		x	Byproducts Perchlorate	EPA 331.0			
Chlorinated Acids	EPA 555	x		x	Perchlorate (low and high)	EPA 331.0 EPA 314.0	x		x
Chlorine Dioxide	SM 4500-CLO2 D	x		×	Perfluorinated Alkyl Acids	EPA 537	x		x
Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	x	×	×	pH	EPA 150.1	x		
Conductivity	EPA 120.1		x		pH	SM 4500-H+B	x	-	x
					Phenylurea Pesticides/	In House Method, based on EPA		х	
Conductivity Corrosivity (Langelier Index)	SM 2510B SM 2330B	x	x	x	Herbicides	532 (2448)	×		×
		×		×		IDEXX Pseudalert (2461)	x		×
Cryptosporidium	EPA 1623	×		x	Radium-226	GA Institute of Tech	x		x
Cyanide, Amenable	SM 4500-CN G	x	x		Radium-228	GA Institute of Tech	×		x
yanide, Free	SM 4500CN F	×	x	x	Radon-222	SM 7500RN	×		x
Cyanide, Total Cyanogen Chloride	EPA 335.4 In House Method (2470)	x	x	x	Residue, Filterable Residue, Non-filterable	SM 2540C SM 2540D	×	×	x
screen) Diquat and Paraquat	EPA 549.2	x		x	Residue, Total				
DBP/HAA	SM 6251B	×			Residue, Volatile	SM 2540B		x	x
Dissolved Oxygen	SM 4500-O G	^	x	×	Semi-VOC	EPA 160.4		x	
DOC	SM 5310C	×	^	x	Semi-VOC	EPA 525.2 EPA 625	×	x	x x
3. Coli	(MTF/EC+MUG)	×		x	Silica		×	x x	×
. Coli	the second se					SM 4500-Si D			
	CFR 141.21(f)(6)(i)	×		x	Silica	SM 4500-SiO2 C	x	х	
i. Coli	SM 9223		×		Sulfide	SM 4500-S" D		х	
. Coli (Enumeration)	SM 9221B.1/ SM 9221F	x		х	Sulfite	SM 4500-SO3B	×	x	×
. Coli (Enumeration)	SM 9223B	x		X	Surfactants	SM 5540C	×	x	X
DB/DCBP	EPA 504.1	x			Taste and Odor Analytes	SM 6040E	×		x
DB/DBCP and DBP	EPA 551.1	х		x	Total Coliform (P/A)	SM 9221 A, B	×		x
DTA and NTA	In House Method (2454)	x		×	Total Coliform (Enumeration)	SM 9221 A, B, C	×		x
indothall	EPA 548.1	x		x	Total Coliform / E. coli	Colisure SM 9223	×		x
indothall	In-house Method (2445)	x		x	Total Coliform	SM 9221B		×	
interococci	SM 9230B	x	x		Total Coliform with Chlorine Present	SM 9221B		×	
ecal Coliform	SM 9221 E (MTF/EC)	×			Total Coliform / E.coli (P/A and Enumeration)	SM 9223	×		x
ecal Coliform	SM 9221C, E (MTF/EC)		×		TOC	SM 5310C	×	x	×
ecal Coliform Enumeration)	SM 9221E (MTF/EC)	x		×	тох	SM 5320B		x	
ecal Coliform with hlorine Present	SM 9221E		x		Total Phenols	EPA 420.1		x	
ecal Streptococci	SM 9230B	x	x		Total Phenols	EPA 420.4	x	x	x
luoride	SM 4500-F C	x	x	×	Total Phosphorous	SM 4500 P E		×	^
iardia	EPA 1623	×		×	Turbidity	EPA 180.1	×	×	x
lyphosate	EPA 547	x		×	Turbidity	SM 2130B	x	×	~
ross Alpha/Beta	EPA 900.0	x	x	x	Uranium by ICP/MS	EPA 200.8	x	-	x
ross Alpha Coprecipitation	SM 7110 C	x	x	x	UV 254	SM 5910B			-4
ardness	SM 2340B	x	×	x	VOC	EPA 524.2/EPA 524.3	x		×
eterotrophic Bacteria	In House Method (2439)	x	<u>^</u>	x	VOC	EPA 524.2/EPA 524.3 EPA 624	~ ~	×	×
eterotrophic Bacteria	SM 9215 B	x		x	VOC	EPA SW 846 8260	×		×
exavalent Chromium	EPA 218.6	x	x	x	VOC	In House Method (2411)	x		
									×

ISO 17025 Accredited Method List The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ANAB. Refer to Certificate and scope of accreditation [AT 1807] found at: http://www.eatopapalutical.com

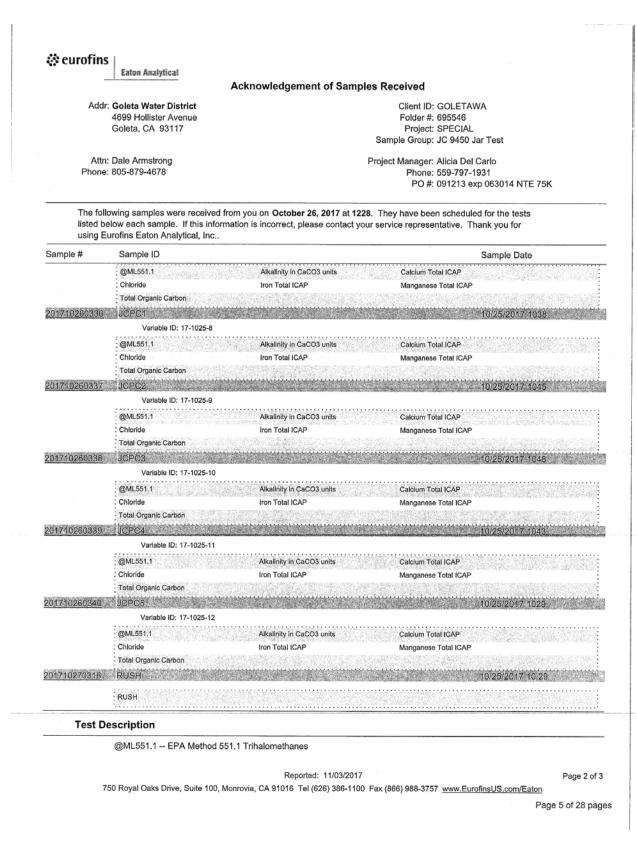
 Yeast and Mold
 Step (2+1)
 X

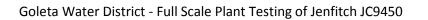
 Yeast and Mold
 SM 9610
 x

 750 Royal Oaks Dr., Ste 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com
 x

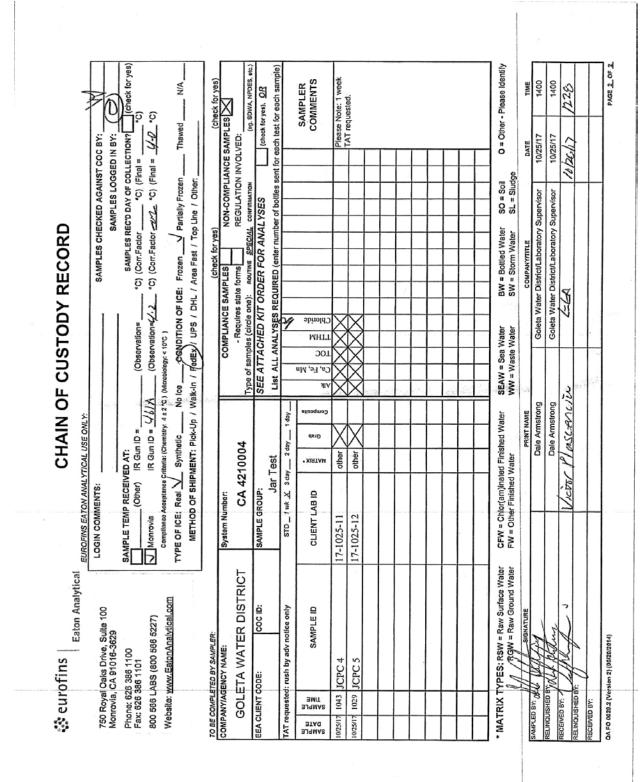
Version 002 Issued: 09/21/2016

Page 3 of 28 pages


		Acknowledgement of Sampl	es Received
Ad	dr: Goleta Water District 4699 Hollister Avenue Goleta, CA 93117		Client ID: GOLETAWA Folder #: 695546 Project: SPECIAL Sample Group: JC 9450 Jar Test
	tn: Dale Armstrong te: 805-879-4678		Project Manager: Alicia Del Carlo Phone: 559-797-1931 PO #: 091213 exp 063014 NTE 75K
listed			 They have been scheduled for the tests ur service representative. Thank you for
Sample #	Sample ID		Sample Date
20171026032	9 JC Control		10/25/2017 0946
	Variable ID: 17-1025-1 @ML551.1 Chloride	Alkalinity in CaCO3 units Iron Total ICAP	Calcium Total ICAP Manganese Total ICAP
	Total Organic Carbon		
20171026033	- Constitution of the second stream of the second second second stream of the second		10/25/2017 1000
	Variable ID: 17-1025-2		· · · · · · · · · · · · · · · · · · ·
	@ML551.1	Alkalinity in CaCO3 units	Calcium Total ICAP
	Chloride	Iron Total ICAP	Manganese Total ICAP
	Total Organic Carbon		
20171026033			10/25/2017 1004
	Variable ID: 17-1025-3		
	@ML551.1	Alkalinity in CaCO3 units	Calcium Total ICAP
	Chloride	Iron Total ICAP	Manganese Total ICAP
201710260333			10/25/2017-0955
	Variable ID: 17-1025-4		
	@ML551.1 Chloride	Alkalinity in CaCO3 units	Calcium Total ICAP
	Total Organic Carbon	Iron Total ICAP	Manganese Total ICAP
201710260333			
-0.0510200303	Variable ID: 17-1025-5		10/29/2017 0946
	PARAMANANA ANA ANA ANA ANA ANA ANA ANA ANA		
	@ML551.1 Chloride	Alkalinity in CaCO3 units	Calcium Total ICAP
	Total Organic Carbon	Iron Total ICAP	Manganese Total ICAP
201710260334			
0.010200002	Variable ID: 17-1025-6		10/25/2017 0939
	PARTICIPAL CALLS AND		
	@ML551.1 Chloride	Alkalinity in CaCO3 units Iron Total ICAP	Calcium Total ICAP
	Total Organic Carbon	TOT TOTALICAP	Manganese Total ICAP
201710260335		dillar and the second second	10/25/2017 1024
01/0200000	Variable ID: 17-1025-7		10/23/2017 10/24


750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www.EurofinsUS.com/Eaton

Page 4 of 28 pages


-	Eaton Analytical	Acknowledgement	of Samples Received		
Addr	: Goleta Water District 4699 Hollister Avenue Goleta, CA 93117				
	: Dale Armstrong : 805-879-4678		Project Manager: Alici Phone: 559 PO #: 091:		75K
listed be			2017 at 1228. They have been sci contact your service representation		
Sample #	Sample ID			Sample Date	
					•)
7	50 Roval Oaks Drive Suite 100 M	Reported: Monrovia, CA 91016 Tel (62)	11/03/2017 6) 386-1100 Fax (866) 988-3757 <u>wv</u>	ww.Eurofinst.IS.com/Eato	Page 3 of
,	oo noyal oaka biiye, oake roo, ii		0,500-1100 1 ax (000) 500-5757 ww		n Page 6 of 28 pa

				1 5			-1		—									1 >		The second s		_,		
	G	(check for yes)	°C)	check for yes)		(check for yes). <u>OR</u>	a caul sample	SAMPLER COMMENTS	Please Note: 1 week	lested.								0 = Other - Please Identify	TIME	1400	1400	1228		PAGE 1 OF 3
	123569	N BY:	Thawe	(ch		SEE ATTACHED KIT ORDER FOR ANALYSES (teaction to the former) and the former of the former) and the former of the f		S S	Please N	I AI red									DATE	10/25/17	10/25/17	10/24/17		
		SAMPLES CHECKED AGAINST COC BY: SAMPLES LOGGED IN BY; SAMPLES REC'D DAY OF COLLECTION) (Corr.Factor) (Final =)	Partially Frozen _ op Line / Other		REGULATION INVOLVED:	NL YSES												r SO = Soil SL = Sludge		Supervisor	-			
CHAIN OF CLISTODY RECORD		SAMPLES CHE S. SAMPLES RE "C) (Corr.Factor_	T	(check for yes)		SEE ATTACHED KIT ORDER FOR ANALYSES List ALL ANALYSES REQUIRED (enter number of boil												BW = Bottled Water SW = Storm Water	COMPANY/TITLE	Goleta Water District/Laboratory Supervisor	Goleta Water District/Laboratory Supervisor			
			ON OF ICE	(che		HED KIT ORI	87	TTHM Chloride	X	X	X	\mathbf{X}	\mathbf{x}	\mathbf{R}	K	K	\mathbb{X}			Goleta Water D	Goleta Water D	FER		2
E CLIST		(Observation=	Monrovia IR Gun ID = <u>UUUA</u> (Observation cempliance Acceptance Cyteria: (Chamistry: 4 ± 2°C) (Microbiology: 4 10°C) E OF ICE: Real <u>Synthetic</u> No loc <u>CONDITION</u> METHOD OF SHIPMENT: Pick-Up / Walk-in / FedEx / UPS)	- Require state - Requires state Type of samples (circle one):	SEE ATTAC	-	Alk Ca, Fe, Mn TOC					\mathbf{X}	X				SEAW = Sea Water WW = Waste Water	1	124.		64 ³⁴	State .	
	USE ONLY:	0	IR Gun ID = <u>/////</u> teria: (Chemistry: 4 ± 2 * C) (/ Synthetic No Ic AENT: Pick-Up / Waik		4		2 day 1 day	denD Composite	X	X	X	\mathbf{X}	\mathbf{A}			X	X		PRINT NAME	Dale Armstrong	Dale Armstrong	Paration		
Ċ	ANAL YTICAL	ENTS: RECEIVED AT: (Other) IR Gun ID =	IR Gun ID = tance Cyteria: (Chemisis al Synthetic ' SHIPMENT: Pick-		CA 4210004	P: Jar Test	X 3 day_2 c	. XIЯТАМ	other	other	other	other	other	other	other	other	other	m)inated Finis ished Water			4	welt a		
	EUROFINS EATON ANALYTICAL USE ONLY:	LOGIN COMMENTS: SAMPLE TEMP RECEIVED AT:	Compliance Acceptance Compliance Acceptance TYPE OF ICE: Real <u>→</u> METHOD OF SHI	Svstem Number	Ū	SAMPLE GROUP: J	STD_1 wk X 3 day_	CLIENT LAB ID	17-1025-1	17-1025-2	17-1025-3	17-1025-4	17-1025-6	17-1025-7	17-1025-8	17-1025-9	17-1025-10	CFW = Chlor(am)inated Finished Water FW = Other Finished Water		11.000 (A.		NN		
fins	Eaton Analytical	750 Royal Daks Drive, Suite 100 Monrovia, CA 91016-3629 Phone: 626 386 1100 Fax: 628 386 1101	800 566 LABS (800 566 5227) Website: <u>www.EatonAnalvtical.com</u>	TO BE COMPLETED BY SAMPLER. COMPANY/AGENCY NAME:	GOLETA WATER DISTRICT	DE: COC ID:	TAT requested: rush by adv notice only	SAMPLEID	JC Control	JCI	62	5 3	5 55	CPC	CPCI	CPC2	CPC3	MATRIX TYPES: RSW = Raw Surface Water	A BIGNATURE	We hand I	the and the way	the the	A 1	04 FO 0028.2 (Voraion 2) (00/28/2014)
🔅 eurofins		Royal C rovia, C ne: 626 626 38	566 LAE site: <u>ww</u>	NYIAGEN	OLEI	EEA CLIENT CODE:	uested:	AMPLE AMIT	0946 JC	1000 JC	10/25/17 1004 JC2	10/25/17 0955 JC3	10/25/17 0946 JC4	1024 JCPC	1038 JCPC1	1045 JCPC2	10/25/17 1048 JCPC3	RIX TY	Wind and	RELINQUISHED BY:	BV: Y	SHED BY:) BY:	29.2 (Voral
	:	750 Mon Phoi Fax:	800 Wet	TO BE C	U	EEA CL	TAT red	319MA2 9TAQ	10/25/17	10/25/17	10/25/17	10/25/17	10/25/17	10/25/17	10/25/17	10/25/17	10/25/17	* MAT	SAUDI CO BVA	RELINCU	RECEIVED BY:	RELINOUISHED B	RECEIVED BY:	QAFO 00

Page 7 of 28 pages

Page 8 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Comments

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Flags Legend:

B4 - Target analyte detected in blank at or above method acceptance criteria.

The Comments Report may be blank if there are no comments for this report.

Page 9 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Hits

Samples Received on:

10/26/2017 1228

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District

Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Analyzed		Analyte	Sample ID	Result	Federal MCL	Units	MRL
		201710260329	JC Control				
10/27/2017	22:57	Alkalinity in CaCO3 units		140		mg/L	2
10/30/2017	23:59	Bromodichloromethane		15		ug/L	0.5
10/27/2017	12:44	Calcium Total ICAP		81		mg/L	1
10/26/2017	23:29	Chloride		29	250	mg/L	2
10/30/2017	23:59	Chloroform		26		ug/L	0.5
10/30/2017	23:59	Dibromochloromethane		4.2		ug/L	0.5
10/27/2017	12:44	Manganese Total ICAP		0.014	0.05	mg/L	0.002
11/01/2017	17:34	Total Organic Carbon		4.7		mg/L	0.3
10/30/2017	23:59	Total Trihalomethanes		45	80	ug/L	0.5
		201710260330	JC1				
10/28/2017	01:09	Alkalinity in CaCO3 units		150		mg/L	2
10/31/2017	00:50	Bromodichloromethane		0.74		ug/L	0.5
10/27/2017	12:47	Calcium Total ICAP		78		mg/L	1
10/26/2017	19:50	Chloride		27	250	mg/L	2
10/31/2017	00:50	Chloroform		1.5		ug/L	0.5
10/27/2017	12:47	Manganese Total ICAP		0.014	0.05	mg/L	0.002
11/01/2017	17:56	Total Organic Carbon		4.6		mg/L	0.3
10/31/2017	00:50	Total Trihalomethanes		2.2	80	ug/L	0.5
		201710260331	JC2	•			
10/27/2017	23:13	Alkalinity in CaCO3 units		150		mg/L	2
10/31/2017	01:40	Bromodichloromethane		2.0		ug/L	0.5
10/27/2017	12:50	Calcium Total ICAP		79		mg/L	1
10/26/2017	20:29	Chloride		28	250	mg/L	2
10/31/2017	01:40	Chloroform		3.6		ug/L	0.5
10/31/2017	01:40	Dibromochloromethane		0.61		ug/L	0.5
10/27/2017	12:50	Manganese Total ICAP		0.013	0.05	mg/L	0.002
1/01/2017	18:18	Total Organic Carbon		4.5		mg/L	0.3
10/31/2017	01:40	Total Trihalomethanes		6.2	80	ug/L	0.5
		201710260332	JC3				
0/27/2017	23:05	Alkalinity in CaCO3 units		140		mg/L	2
0/31/2017	02:06	Bromodichloromethane		4.1		ug/L	0.5
0/27/2017	12:51	Calcium Total ICAP		79		mg/L	1
0/26/2017	20:42	Chloride		28	250	mg/L	2
0/31/2017	02:06	Chloroform		6,9		ug/L	0.5
0/31/2017	02:06	Dibromochloromethane		1.2		ug/L	0.5

SUMMARY OF POSITIVE DATA ONLY

Page 10 of 28 pages

🏟 eurofins

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory Hits

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District

Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Samples Received on: 10/26/2017 1228

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
10/27/2017 12:51	Manganese Total ICAP		0.013	0.05	mg/L	0.002
11/01/2017 18:42	Total Organic Carbon		4.5		mg/L	0.3
10/31/2017 02:06	Total Trihalomethanes		12	80	ug/L	0.5
	201710260333	JC4				
10/27/2017 20:50	Alkalinity in CaCO3 units	3	140		mg/L	2
10/31/2017 02:31	Bromodichloromethane		9.4		ug/L	0.5
10/27/2017 12:52	Calcium Total ICAP		78		mg/L	1
10/26/2017 20:55	Chloride		29	250	mg/L	2
10/31/2017 02:31	Chloroform		14		ug/L	0.5
10/31/2017 02:31	Dibromochloromethane		3.1		ug/L	0.5
10/27/2017 12:52	Manganese Total ICAP		0.012	0.05	mg/L	0.002
11/01/2017 19:04	Total Organic Carbon		4.5		mg/L	0.3
10/31/2017 02:31	Total Trihalomethanes		26	80	ug/L	0.5
	201710260334	JC5				
10/27/2017 21:05	Alkalinity in CaCO3 units	4	150		mg/L	2
10/31/2017 02:56	Bromodichloromethane		14		ug/L	0.5
10/27/2017 13:11	Calcium Total ICAP		80		mg/L	1
10/26/2017 21:07	Chloride		31	250	mg/L	2
10/31/2017 02:56	Chloroform		23		ug/L	0.5
10/31/2017 02:56	Dibromochloromethane		4.1		ug/L	0.5
10/27/2017 13:11	Manganese Total ICAP		0.011	0.05	mg/L	0.002
11/01/2017 19:27	Total Organic Carbon		4.4		mg/L	0.3
10/31/2017 02:56	Total Trihalomethanes		41	80	ug/L	0.5
	201710260335	JCPC				
10/28/2017 01:33	Alkalinity in CaCO3 units		150		mg/L	2
10/31/2017 03:21	Bromodichloromethane		10		ug/L	0.5
10/27/2017 12:53	Calcium Total ICAP		79		mg/L	1
10/26/2017 22:51	Chloride		30	250	mg/L	2
10/31/2017 03:21	Chloroform		18		ug/L	0.5
10/31/2017 03:21	Dibromochloromethane		2.8		ug/L	0.5
10/27/2017 12:53	Manganese Total ICAP		0.0057	0.05	mg/L	0.002
11/01/2017 21:19	Total Organic Carbon		4.8		mg/L	0.3
10/31/2017 03:21	Total Trihalomethanes		31	80	ug/L	0.5
	201710260336	JCPC1				
10/27/2017 20:19	Alkalinity in CaCO3 units		150		mg/L	2

SUMMARY OF POSITIVE DATA ONLY

Page 11 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue

Goleta, CA 93117

Samples Received on: 10/26/2017 1228

Laboratory Hits

Analyzed		Analyte	Sample ID	Result	Federal MCL	Units	MRL
10/31/2017	03:46	Bromodichloromethane		0.59		ug/L	0.5
10/27/2017	12:54	Calcium Total ICAP		79		mg/L	1
10/26/2017	21:20	Chloride		28	250	mg/L	2
10/31/2017	03:46	Chloroform		1.5		ug/L	0.5
10/27/2017	12:54	Manganese Total ICAP		0.014	0.05	mg/L	0.002
11/01/2017	21:41	Total Organic Carbon		4.7		mg/L	0.3
10/31/2017	03:46	Total Trihalomethanes		2.1	80	ug/L	0.5
		201710260337	JCPC2				
10/27/2017	23:21	Alkalinity in CaCO3 units		150		mg/L	2
10/31/2017	04:12	Bromodichloromethane		1.8		ug/L	0.5
10/27/2017	12:55	Calcium Total ICAP		79		mg/L	1
10/26/2017	21:33	Chloride		28	250	mg/L	2
10/31/2017	04:12	Chloroform		3.5		ug/L	0.5
10/27/2017	12:55	Manganese Total ICAP		0.015	0.05	mg/L	0.002
11/01/2017	22:03	Total Organic Carbon		4.7		mg/L	0.3
10/31/2017	04:12	Total Trihalomethanes		5.3	80	ug/L	0.5
		201710260338	JCPC3				
10/27/2017	21:13	Alkalinity in CaCO3 units		150		mg/L	2
10/31/2017	04:37	Bromodichloromethane		2,3		ug/L	0.5
10/31/2017	10:58	Calcium Total ICAP		83		mg/L	1
10/26/2017	21:46	Chloride		28	250	mg/L	2
10/31/2017	04:37	Chloroform		4.3		ug/L	0.5
10/31/2017	04:37	Dibromochloromethane		0.59		ug/L	0.5
10/31/2017	10:58	Iron Total ICAP		0.057	0.3	mg/L	0.02
10/31/2017	10:58	Manganese Total ICAP		0.016	0.05	mg/L	0.002
11/01/2017	22:25	Total Organic Carbon		4.6		mg/L	0.3
10/31/2017	04:37	Total Trihalomethanes		7.2	80	ug/L	0.5
		201710260339	JCPC4				
10/27/2017	22:49	Alkalinity in CaCO3 units		150		mg/L	2
10/31/2017	05:27	Bromodichloromethane		3.1		ug/L	0,5
0/27/2017	12:56	Calcium Total ICAP		81		mg/L	1
0/26/2017	21:59	Chloride		29	250	mg/L	2
0/31/2017	05:27	Chloroform		6.0		ug/L	0.5
0/31/2017	05:27	Dibromochloromethane		0.74		ug/L	0.5
0/27/2017	12:56	Manganese Total ICAP		0.014	0.05	mg/L	0.002
1/01/2017	22:46	Total Organic Carbon		4.6		mg/L	0.3

SUMMARY OF POSITIVE DATA ONLY

Page 12 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Hits

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District

Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117 Samples Received on: 10/26/2017 1228

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
0/31/2017 05:27	Total Trihalomethanes		9.8	80	ug/L	0.5
	201710260340	JCPC5				
0/27/2017 20:58	Alkalinity in CaCO3 units	1	150		mg/L	2
0/31/2017 06:18	Bromodichloromethane		4.8		ug/L	0.5
0/27/2017 12:57	Calcium Total ICAP		80		mg/L	1
0/26/2017 22:12	Chloride		30	250	mg/L	2
0/31/2017 06:18	Chloroform		8.7		ug/L	0.5
0/31/2017 06:18	Dibromochloromethane		1.2		ug/L	0.5
0/27/2017 12:57	Manganese Total ICAP		0.011	0.05	mg/L	0.002
1/01/2017 23:08	Total Organic Carbon		4.6		mg/L	0.3
0/31/2017 06:18	Total Trihalomethanes		15	80	ug/L	0.5

SUMMARY OF POSITIVE DATA ONLY

Page 13 of 28 pages

🔅 eurofins Eaton Analytical Laboratory Data Report: 695546 Tel: (626) 386-1100 Project: SPECIAL Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Group: JC 9450 Jar Test **Goleta Water District** Samples Received on: Dale Armstrong 10/26/2017 1228 4699 Hollister Avenue Goleta, CA 93117 Prepped Analyzed Prep Batch Analytical Batch Method Analyte Result Units MRI Dilution JC Control (201710260329) Sampled on 10/25/2017 0946 Variable ID: 17-1025-1 EPA 200.7 - ICP Metals 10/26/17 10/27/17 12:44 1038371 1038551 (EPA 200.7) Calcium Total ICAP 81 mg/L 1 1 10/26/17 10/27/17 12:44 1038371 1038551 Iron Total ICAP (EPA 200.7) ND mg/L 0.02 1 10/26/17 10/27/17 12:44 1038371 1038551 (EPA 200.7) Manganese Total ICAP 0.014 mg/L 0.002 1 SM 5310C - Total Organic Carbon 11/01/17 17:34 1039846 (SM 5310C) Total Organic Carbon 4.7 mg/L 0.3 1 EPA 551.1 - EPA Method 551.1 Trihalomethanes 10/30/17 10/30/17 23:59 1039098 1039158 (EPA 551.1) Bromodichloromethane 15 ug/L 0.5 1 10/30/17 10/30/17 23:59 1039098 1039158 (EPA 551.1) Bromoform ND 0.5 ug/L 1 10/30/17 10/30/17 23:59 1039098 1039158 (EPA 551.1) Chloroform 26 ug/L 0.5 1 10/30/17 10/30/17 23:59 1039098 1039158 (EPA 551.1) Dibromochloromethane 4.2 ug/L 0.5 1 10/30/17 10/30/17 23:59 1039158 1039098 (EPA 551.1) Total Trihalomethanes 45 ug/L 0.5 1 10/30/17 10/30/17 23:59 1039098 1039158 (EPA 551.1) 1,2-Dibromopropane 106 % 1 10/30/17 10/30/17 23:59 1039098 1039158 (EPA 551.1) 4-Bromofluorobenzene 102 % 1 EPA 300.0 - Chloride, Sulfate by EPA 300.0 10/26/17 23:29 1038403 (EPA 300.0) Chloride 29 mg/L 2 2 SM 2320B - Alkalinity in CaCO3 units 10/27/17 22:57 1038919 Alkalinity in CaCO3 units (SM 2320B) 140 mg/L 2 1 JC1 (201710260330) Sampled on 10/25/2017 1000 Variable ID: 17-1025-2 EPA 200.7 - ICP Metals 10/26/17 10/27/17 12:47 1038371 1038551 (EPA 200.7) Calcium Total ICAP 78 mg/L 1 1 10/26/17 10/27/17 12:47 1038371 1038551 (EPA 200.7) Iron Total ICAP ND mg/L 0.02 1 10/26/17 10/27/17 12:47 1038371 1038551 (EPA 200.7) Manganese Total ICAP 0.014 0.002 mg/L 1 SM 5310C - Total Organic Carbon 11/01/17 17:56 1039846 (SM 5310C) Total Organic Carbon 4.6 0.3 mg/L 1 EPA 551.1 - EPA Method 551.1 Trihalomethanes 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) Bromodichloromethane 0.74 ug/L 0.5 1 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) Bromoform ND ug/L 0.5 1 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) Chloroform 1.5 ug/L 0.5 1 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) Dibromochloromethane ND ug/L 0.5 1 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) Total Trihalomethanes 2.2 ug/L 0.5 1 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) 1,2-Dibromopropane 98 % 1 10/30/17 10/31/17 00:50 1039098 1039158 (EPA 551.1) 4-Bromofluorobenzene 103 % 1 EPA 300.0 - Chloride, Sulfate by EPA 300.0 10/26/17 19:50 1038403 (EPA 300.0) Chloride 27 mg/L 2 2 SM 2320B - Alkalinity in CaCO3 units

Rounding on totals after summation (c) - indicates calculated results

Page 14 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Data

Samples Received on:

10/26/2017 1228

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Prepped Analyzed Prep Batch Analytical Batch Method Analyte Result Units MRL Dilution 10/28/17 01:09 1038920 (SM 2320B) Alkalinity in CaCO3 units 150 mg/L 2 JC2 (201710260331) Sampled on 10/25/2017 1004 Variable ID: 17-1025-3 EPA 200.7 - ICP Metals 10/26/17 10/27/17 12:50 1038371 1038551 (EPA 200.7) Calcium Total ICAP 79 mg/L 1 1 10/26/17 10/27/17 12:50 1038371 1038551 (EPA 200.7) Iron Total ICAP ND mg/L 0.02 1 10/26/17 10/27/17 12:50 1038371 1038551 (EPA 200.7) Manganese Total ICAP 0.013 0.002 mg/L 1 SM 5310C - Total Organic Carbon 11/01/17 18:18 1039846 (SM 5310C) Total Organic Carbon 4.5 mg/L 0.3 1 EPA 551.1 - EPA Method 551.1 Trihalomethanes 10/30/17 10/31/17 01:40 1039098 1039158 (EPA 551.1) Bromodichloromethane 2.0 ug/L 0.5 1 10/30/17 10/31/17 01:40 1039098 1039158 (EPA 551.1) Bromoform ND ug/L 0.5 1 10/30/17 10/31/17 01:40 1039098 1039158 (EPA 551.1) Chloroform 3.6 ug/L 0.5 1 10/30/17 10/31/17 01:40 1039158 1039098 (EPA 551.1) Dibromochloromethane 0.61 ug/L 0.5 1 10/30/17 10/31/17 01:40 1039098 1039158 (EPA 551.1) Total Trihalomethanes 6.2 ug/L 0.5 1 10/30/17 10/31/17 01:40 1039098 1039158 1.2-Dibromopropane (EPA 551.1) 92 % 1 10/30/17 10/31/17 01:40 1039098 1039158 (EPA 551.1) 4-Bromofluorobenzene 102 % 1 EPA 300.0 - Chloride, Sulfate by EPA 300.0 10/26/17 20:29 1038403 (EPA 300.0) Chloride 28 mg/L 2 2 SM 2320B - Alkalinity in CaCO3 units 10/27/17 23:13 1038919 (SM 2320B) Alkalinity in CaCO3 units 150 mg/L 2 1 JC3 (201710260332) Sampled on 10/25/2017 0955 Variable ID: 17-1025-4 EPA 200.7 - ICP Metals 10/26/17 10/27/17 12:51 1038371 1038551 (EPA 200.7) Calcium Total ICAP 79 mg/L 1 1 10/26/17 10/27/17 12:51 1038371 1038551 (EPA 200.7) Iron Total ICAP ND mg/L 0.02 1 10/26/17 10/27/17 12:51 1038371 1038551 (EPA 200.7) Manganese Total ICAP 0.013 mg/L 0.002 1 SM 5310C - Total Organic Carbon 11/01/17 18:42 1039846 (SM 5310C) Total Organic Carbon 4.5 mg/L 0.3 1 EPA 551.1 - EPA Method 551.1 Trihalomethanes 10/30/17 10/31/17 02:06 1039098 1039158 Bromodichloromethane (EPA 551.1) 4.1 ug/L 0.5 1 10/30/17 10/31/17 02:06 1039098 1039158 Bromoform (EPA 551.1) ND ug/L 0.5 1 10/30/17 10/31/17 02:06 1039098 1039158 Chloroform 6.9 (EPA 551.1) ug/L 0.5 1 10/30/17 10/31/17 02:06 1039098 1039158 Dibromochloromethane (EPA 551.1) 1.2 ug/L 0.5 1 10/30/17 10/31/17 02:06 1039098 1039158 (EPA 551.1) Total Trihalomethanes 12 ug/L 0.5 1 10/30/17 10/31/17 02:06 1039098 1039158 (EPA 551.1) 1.2-Dibromopropane 98 % 1 10/30/17 10/31/17 02:06 1039098 1039158 (EPA 551.1) 4-Bromofluorobenzene 103 % 1 EPA 300.0 - Chloride, Sulfate by EPA 300.0 10/26/17 20:42 1038403 (EPA 300.0) Chioride 28 mg/L 2 2

Rounding on totals after summation (c) - indicates calculated results

Page 15 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Data

Samples Received on:

10/26/2017 1228

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
		SM 2320B	- Alkalinity in C	aCO3 units					
1	0/27/17 23:05		1038919	(SM 2320B)	Alkalinity in CaCO3 units	140	mg/L	2	1
JC4 (2017	710260333)					Sam	pled on 10/25	2017 0946	6
		le ID: 17-1025							
			 ICP Metals 						
	0/27/17 12:52	1038371	1038551	(EPA 200.7)	Calcium Total ICAP	78	mg/L	1	1
	0/27/17 12:52	1038371	1038551	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
10/26/17 1	0/27/17 12:52	1038371	1038551	(EPA 200.7)	Manganese Total ICAP	0.012	mg/L	0.002	1
		SM 5310C	- Total Organic	Carbon					
1	1/01/17 19:04		1039846	(SM 5310C)	Total Organic Carbon	4.5	mg/L	0.3	1
		EPA 551.1	- EPA Method 5	51.1 Trihalom	nethanes				
	0/31/17 02:31	1039098	1039158	(EPA 551.1)	Bromodichloromethane	9.4	ug/L	0.5	1
	0/31/17 02:31	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
10/30/17 1	0/31/17 02:31	1039098	1039158	(EPA 551.1)	Chloroform	14	ug/L	0.5	1
10/30/17 1	0/31/17 02:31	1039098	1039158	(EPA 551.1)	Dibromochloromethane	3.1	ug/L	0.5	1
10/30/17 1	0/31/17 02:31	1039098	1039158	(EPA 551.1)	Total Trihalomethanes	26	ug/L	0.5	1
10/30/17 1	0/31/17 02:31	1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	93	%		1
10/30/17 1	0/31/17 02:31	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	102	%		1
		EPA 300.0	- Chloride, Sulfa	ate by EPA 30	0.0				
1	0/26/17 20:55		1038403	(EPA 300.0)	Chloride	29	mg/L	2	2
		SM 2320B -	Alkalinity in Ca	aCO3 units					
10	0/27/17 20:50		1038919	(SM 2320B)	Alkalinity in CaCO3 units	140	mg/L	2	1
JC5 (2017	10260334)					Sam	oled on 10/25/	2017 0939	
		e ID: 17-1025-	-						
			- ICP Metals						
	0/27/17 13:11	1038371	1038562	(EPA 200.7)	Calcium Total ICAP	80	mg/L	1	1
	0/27/17 13:11	1038371	1038562	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
10/26/17 10	0/27/17 13:11	1038371	1038562	(EPA 200.7)	Manganese Total ICAP	0.011	mg/L	0,002	1
		SM 5310C	 Total Organic 						
1	1/01/17 19:27		1039846	(SM 5310C)	Total Organic Carbon	4.4	mg/L	0.3	1
			EPA Method 5						
	0/31/17 02:56	1039098	1039158	(EPA 551.1)	Bromodichloromethane	14	ug/L	0.5	1
	0/31/17 02:56	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
	0/31/17 02:56	1039098	1039158	(EPA 551.1)	Chloroform	23	ug/L	0.5	1
0/30/17 10	0/31/17 02:56	1039098	1039158	(EPA 551.1)	Dibromochloromethane	4.1	ug/L	0.5	1
0/30/17 10	0/31/17 02:56	1039098	1039158	(EPA 551.1)	Total Trihalomethanes		ug/L	0.5	1
	0/31/17 02:56	1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	93	%		1
0/30/17 10	0/31/17 02:56	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	103	%		1
	E	EPA 300.0 -	Chloride, Sulfa	te by EPA 30	0.0				

Rounding on totals after summation. (c) - indicates calculated results

Page 16 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Data

Samples Received on:

10/26/2017 1228

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
	10/26/17 21:07		1038403	(EPA 300.0)	Chloride	31	mg/L	2	2
		SM 2320B -	Alkalinity in C			150			
	10/27/17 21:05		1038919	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1
JCPC (2	201710260335	-	-			Samp	oled on 10/25	/2017 102	4
		e ID: 17-1025-	· ICP Metals						
10/26/17	10/27/17 12:53	1038371	1038551	(EPA 200.7)	Calcium Total ICAP	79	mg/L	1	1
10/26/17	10/27/17 12:53	1038371	1038551	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
	10/27/17 12:53	1038371	1038551	(EPA 200.7)	Manganese Total ICAP	0.0057	mg/L	0.002	1
		SM 5310C	- Total Organic			0.0001	119.2	0.002	
	11/01/17 21:19		1039846	(SM 5310C)	Total Organic Carbon	4.8 (B4)	mg/L	0.3	1
		EPA 551.1 -	EPA Method 5	. ,			v		
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	Bromodichloromethane	10	ug/L	0.5	1
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	Chloroform	18	ug/L	0.5	1
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	Dibromochloromethane	2.8	ug/L	0.5	1
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	Total Trihalomethanes	31	ug/L	0.5	1
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	89	%		1
10/30/17	10/31/17 03:21	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	102	%		1
		EPA 300.0 -	Chloride, Sulf	ate by EPA 30	0.0				
	10/26/17 22:51		1038403	(EPA 300.0)	Chloride	30	mg/L	2	2
		SM 2320B -	Alkalinity in C	aCO3 units					
	10/28/17 01:33		1038920	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1
JCPC1 ((20171026033	<u>6)</u>				Samp	led on 10/25	2017 103	в
		e ID: 17-1025-	-						
			ICP Metals						
	10/27/17 12:54	1038371	1038551	(EPA 200.7)	Calcium Total ICAP	79	mg/L	1	1
	10/27/17 12:54	1038371	1038551	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
10/26/17	10/27/17 12:54	1038371	1038551	(EPA 200.7)	Manganese Total ICAP	0.014	mg/L	0.002	1
		SM 5310C -	Total Organic		Total Oregoia Costan	17/04			
	11/01/17 21:41		1039846	(SM 5310C)	Total Organic Carbon	4.7 (B4)	mg/L	0.3	1
0/20/17	10/31/17 03:46		EPA Method 5			0.50			
		1039098 1039098	1039158	(EPA 551.1)	Bromodichloromethane	0.59	ug/L	0.5	1
	10/31/17 03:46		1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
	10/31/17 03:46	1039098	1039158	(EPA 551.1)	Chloroform	1.5 ND	ug/L	0.5	1
	10/31/17 03:46 10/31/17 03:46	1039098 1039098	1039158	(EPA 551.1)	Dibromochloromethane	ND	ug/L	0.5	1
0/30/17		1039098	1039158	(EPA 551.1) (EPA 551.1)	Total Trihalomethanes 1,2-Dibromopropane	2.1 94	ug/L %	0.5	1
0/30/17									

Rounding on totals after summation. (c) - indicates calculated results

Page 17 of 28 pages

🏟 eurofins

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 695546 Project: SPECIAL

> Samples Received on: 10/26/2017 1228

Laboratory Data

Group: JC 9450 Jar Test

Goleta Water District

Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
		EPA 300.0	- Chloride, Sult	fate by EPA 30	00.0				
	10/26/17 21:20		1038403	(EPA 300.0)	Chloride	28	mg/L	2	2
		SM 2320B	- Alkalinity in C	aCO3 units					
	10/27/17 20:19		1038919	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1
JCPC2 (20171026033					Samp	led on 10/25	/2017 104	5
		le ID: 17-1025							
0/00/47			- ICP Metals						
	10/27/17 12:55	1038371	1038551	(EPA 200.7)	Calcium Total ICAP	79	mg/L	1	1
	10/27/17 12:55	1038371	1038551	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
10/26/17	10/27/17 12:55	1038371	1038551	(EPA 200.7)	Manganese Total ICAP	0.015	mg/L	0.002	1
		SM 5310C	- Total Organic						
	11/01/17 22:03		1039846	(SM 5310C)	Total Organic Carbon	4.7 (B4)	mg/L	0.3	1
0/20/17	10/31/17 04:12	EPA 551.1 1039098	- EPA Method \$ 1039158			4.0			
				(EPA 551.1)	Bromodichloromethane	1.8	ug/L	0.5	1
	10/31/17 04:12 10/31/17 04:12	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
		1039098	1039158	(EPA 551.1)	Chloroform	3.5	ug/L	0.5	1
	10/31/17 04:12	1039098	1039158	(EPA 551.1)	Dibromochloromethane	ND	ug/L	0.5	1
	10/31/17 04:12	1039098	1039158	(EPA 551.1)	Total Trihalomethanes	5.3	ug/L	0.5	1
	10/31/17 04:12	1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	91	%		1
10/30/17	10/31/17 04:12	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	101	%		1
		EPA 300.0	- Chloride, Sulf	· · · · · · · · · · · · · · · · · · ·					0.0.0
	10/26/17 21:33		1038403	(EPA 300.0)	Chloride	28	mg/L	2	2
		SM 2320B -	Alkalinity in C						
	10/27/17 23:21	-	1038919	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1
JCPC3 ()	20171026033					Samp	led on 10/25	2017 1048	3
		e ID: 17-1025-	ICP Metals						
0/26/17	10/31/17 10:58	1038371	1039188	(EPA 200.7)	Calcium Total ICAP	83	mg/L	1	1
	10/31/17 10:58	1038371	1039188	(EPA 200.7)	Iron Total ICAP	0.057	mg/L	0.02	1
	10/31/17 10:58	1038371	1039188	(EPA 200.7)	Manganese Total ICAP	0.016	mg/L	0.002	1
			- Total Organic		manganoso rotariosa	0.010	ingre	0.002	
,	11/01/17 22:25	011 00100	1039846	(SM 5310C)	Total Organic Carbon	4.6 (B4)	mg/L	0.3	1
		EPA 551.1 -	EPA Method 5	(,		1.0 (01)	ing/L	0.0	
0/30/17	10/31/17 04:37	1039098	1039158	(EPA 551.1)	Bromodichloromethane	2.3	ug/L	0.5	1
	10/31/17 04:37	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
	10/31/17 04:37	1039098	1039158	(EPA 551.1)	Chloroform	4.3	ug/L	0.5	1
	10/31/17 04:37	1039098	1039158	(EPA 551.1)	Dibromochloromethane	0.59	ug/L	0.5	1
	10/31/17 04:37	1039098	1039158	(EPA 551.1)	Total Trihalomethanes	7.2	ug/L	0.5	1
		1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	97	%	0.0	1
0/30/17 1	10/31/1/ 04:3/				1.2-Dibromopropane				

Page 18 of 28 pages

eurofins Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Data

Samples Received on: 10/26/2017 1228

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
0/30/17	10/31/17 04:37	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	99	%		1
		EPA 300.0 -	Chloride, Sulf	-					
	10/26/17 21:46		1038403	(EPA 300.0)	Chloride	28	mg/L	2	2
		SM 2320B -	Alkalinity in C						
	10/27/17 21:13		1038919	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1
JCPC4	(20171026033					Samp	oled on 10/25	/2017 104:	3
		e ID: 17-1025-							
0/26/17	10/27/17 12:56	EPA 200.7 -		(504 000 7)	Calcium Tata UOAD				
		1038371	1038551	(EPA 200.7)	Calcium Total ICAP	81	mg/L	1	1
	10/27/17 12:56	1038371	1038551	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
0/26/17	10/27/17 12:56	1038371	1038551	(EPA 200.7)	Manganese Total ICAP	0.014	mg/L	0.002	1
		SM 5310C	Total Organic						
	11/01/17 22:46		1039846	(SM 5310C)	Total Organic Carbon	4.6 (B4)	mg/L	0.3	1
0/00/47			EPA Method 5						
	10/31/17 05:27	1039098	1039158	(EPA 551.1)	Bromodichloromethane	3.1	ug/L	0.5	1
	10/31/17 05:27	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
	10/31/17 05:27	1039098	1039158	(EPA 551.1)	Chloroform	6.0	ug/L	0.5	1
	10/31/17 05:27	1039098	1039158	(EPA 551.1)	Dibromochloromethane	0.74	ug/L	0.5	1
	10/31/17 05:27	1039098	1039158	(EPA 551.1)	Total Trihalomethanes	9.8	ug/L	0.5	1
	10/31/17 05:27	1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	90	%		1
0/30/17	10/31/17 05:27	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	102	%		1
		EPA 300.0 -	Chloride, Sulf						
	10/26/17 21:59		1038403	(EPA 300.0)	Chloride	29	mg/L	2	2
		SM 2320B -	Alkalinity in C	aCO3 units					
	10/27/17 22:49		1038919	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1
CPC5 (20171026034	_				Samp	led on 10/25	2017 1029)
		e ID: 17-1025-1							
0.00.47		EPA 200.7 -							
	10/27/17 12:57	1038371	1038551	(EPA 200.7)	Calcium Total ICAP	80	mg/L	1	1
	10/27/17 12:57	1038371	1038551	(EPA 200.7)	Iron Total ICAP	ND	mg/L	0.02	1
0/26/17	10/27/17 12:57	1038371	1038551	(EPA 200.7)	Manganese Total ICAP	0.011	mg/L	0.002	1
		SM 5310C -	Total Organic						
	11/01/17 23:08		1039846	(SM 5310C)	Total Organic Carbon	4.6 (B4)	mg/L	0.3	1
			EPA Method 5						
	10/31/17 06:18	1039098	1039158	(EPA 551.1)	Bromodichloromethane	4.8	ug/L	0.5	1
	10/31/17 06:18	1039098	1039158	(EPA 551.1)	Bromoform	ND	ug/L	0,5	1
	10/31/17 06:18	1039098	1039158	(EPA 551.1)	Chloroform	8.7	ug/L	0.5	1
	10/31/17 06:18	1039098	1039158	(EPA 551.1)	Dibromochloromethane	1.2	ug/L	0.5	1
0/30/17	10/31/17 06:18	1039098	1039158	(EPA 551.1)	Total Trihalomethanes	15	ug/L	0.5	1

Rounding on totals after summation. (c) - indicates calculated results

Page 19 of 28 pages

eurofins Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Data

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Samples Received on: 10/26/2017 1228

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
10/30/17	10/31/17 06:18	1039098	1039158	(EPA 551.1)	1,2-Dibromopropane	93	%		1
10/30/17	10/31/17 06:18	1039098	1039158	(EPA 551.1)	4-Bromofluorobenzene	104	%		1
	1	EPA 300.0	- Chloride, Sulf	ate by EPA 30	0.0				
	10/26/17 22:12		1038403	(EPA 300.0)	Chloride	30	mg/L	2	2
	:	SM 2320B ·	Alkalinity in Ca	aCO3 units					
	10/27/17 20:58		1038919	(SM 2320B)	Alkalinity in CaCO3 units	150	mg/L	2	1

Rounding on totals after summation, (c) - indicates calculated results

Page 20 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Goleta Water District

Chloride, Sulfate by EPA 300.0

Analytical Batch:	1038403
201710260329	JC Control
201710260330	JC1
201710260331	JC2
201710260332	JC3
201710260333	JC4
201710260334	JC5
201710260335	JCPC
201710260336	JCPC1
201710260337	JCPC2
201710260338	JCPC3
201710260339	JCPC4
201710260340	JCPC5

ICP Metals

Prep Batch: 1038371 Analytical Batch: 1038551

201710260329	JC Control
201710260330	JC1
201710260331	JC2
201710260332	JC3
201710260333	JC4
201710260335	JCPC
201710260336	JCPC1
201710260337	JCPC2
201710260339	JCPC4
201710260340	JCPC5

ICP Metals

Prep Batch: 1038371 Analytical Batch: 1038562 201710260334 JC5

Alkalinity in CaCO3 units

Analytical Batch: 1038919

Analytical Batch: 1038919	
201710260329	JC Control
201710260331	JC2
201710260332	JC3
201710260333	JC4
201710260334	JC5
201710260336	JCPC1
201710260337	JCPC2
201710260338	JCPC3
 201710260339	JCPC4
201710260340	JCPC5

Alkalinity in CaCO3 units

Analytical Batch: 1038920

Laboratory QC Summary

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Analysis Date: 10/26/2017

Analyzed by: O2TX Analyzed by: O2TX

Analysis Date: 10/27/2017

Analyzed by: 6Q4 Analyzed by: 6Q4

Analysis Date: 10/27/2017 Analyzed by: 6Q4

Analysis Date: 10/27/2017

Analyzed by: G6PC Analyzed by: G6PC

Analysis Date: 10/28/2017

Page 21 of 28 pages

Eaton Analytical

JC1

JCPC

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Goleta Water District

201710260330 201710260335

EPA Method 551.1 Trihalomethanes Prep Batch: 1039098 Analytical Batch: 1039158

Fiep Batch. 1039096	Analytical Batch. 10391
201710260329	JC Control
201710260330	JC1
201710260331	JC2
201710260332	JC3
201710260333	JC4
201710260334	JC5
201710260335	JCPC
201710260336	JCPC1
201710260337	JCPC2
201710260338	JCPC3
201710260339	JCPC4
201710260340	JCPC5

ICP Metals

Prep Batch: 1038371 Analytical Batch: 1039188

201710260338 JCPC3 Total Organic Carbon

Analytical Batch: 1039846

201710260329	JC Control
201710260330	JC1
201710260331	JC2
201710260332	JC3
201710260333	JC4
201710260334	JC5
201710260335	JCPC
201710260336	JCPC1
201710260337	JCPC2
201710260338	JCPC3
201710260339	JCPC4
201710260340	JCPC5

Laboratory QC Summary

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

> Analyzed by: G6PC Analyzed by: G6PC

Analysis Date: 10/30/2017

Analyzed by: YIV3 Analyzed by: YIV3

Analysis Date: 10/31/2017 Analyzed by: 6Q4

Analysis Date: 11/01/2017

Analyzed by: LUPE Analyzed by: LUPE

Page 22 of 28 pages

🔅 eurofins Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory QC

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
Chloride, Sulfate I	by EPA 300.0 by EPA 300.0								
Analytical B	atch: 1038403					An	alysis Date	: 10/26/2017	
LCS1	Chloride		25	25.9	mg/L	104	(90-110)		
.CS2	Chloride		25	25,9	mg/L	104	(90-110)	20	0.0
IBLK	Chloride			<0.25	mg/L				
IRL_CHK	Chloride		0.5	0.439	mg/L	88	(50-150)		
AS_201710260330	Chloride	27	26	54.0	mg/L	107	(80-120)		
IS_201710260335	Chloride	30	26	56.6	mg/L	106	(80-120)		
ISD_201710260330	Chloride	27	26	53.9	mg/L	107	(80-120)	20	0.19
ISD_201710260335	Chloride	30	26	56.6	mg/L	106	(80-120)	20	0.081
CP Metals by EPA	200.7								
Analytical B	atch: 1038551					An	alysis Date:	10/27/2017	
CS1	Calcium Total ICAP		50	50.2	mg/L	100	(85-115)		
CS2	Calcium Total ICAP		50	49.2	mg/L	99	(85-115)	20	2.0
BLK	Calcium Total ICAP			<0.5	mg/L				
RL_CHK	Calcium Total ICAP		1	0.942	mg/L	94	(50-150)		
S_201710260193	Calcium Total ICAP	50	50	92.4	mg/L	84	(70-130)		
S2_201710260329	Calcium Total ICAP	81	50	117	mg/L	73	(70-130)		
SD_201710260193	Calcium Total ICAP	50	50	93.5	mg/L	86	(70-130)	20	1.1
SD2_201710260329	Calcium Total ICAP	81	50	121	mg/L	82	(70-130)	20	3.1
CS1	Iron Total ICAP		5	5.00	mg/L	100	(85-115)		
S2	Iron Total ICAP		5	4.91	mg/L	98	(85-115)	20	1.8
BLK	Iron Total ICAP			<0.01	mg/L				
RL_CHK	Iron Total ICAP		0.02	0.0197	mg/L	99	(50-150)		
S_201710260193	Iron Total ICAP	0.71	5	5.58	mg/L	97	(70-130)		
S2_201710260329	Iron Total ICAP	ND	5	4.98	mg/L	99	(70-130)		
SD_201710260193	Iron Total ICAP	0.71	5	5.54	mg/L	97	(70-130)	20	0.70
SD2_201710260329	Iron Total ICAP	ND	5	5.08	mg/L	101	(70-130)	20	2.3
CS1	Manganese Total ICAP		0.5	0.500	mg/L	100	(85-115)		
S2	Manganese Total ICAP		0.5	0.491	mg/L	98	(85-115)	20	1.8
BLK	Manganese Total ICAP			<0.001	mg/L				
RL_CHK	Manganese Total ICAP		0.002	0.00205	mg/L	103	(50-150)		
S_201710260193	Manganese Total ICAP	0.027	0.5	0.520	mg/L	99	(70-130)		
S2_201710260329	Manganese Total ICAP	0.014	0.5	0.510	mg/L	99	(70-130)		
SD_201710260193	Manganese Total ICAP	0.027	0.5	0.520	mg/L	99	(70-130)	20	0.027
\$D2_201710260329-	Manganese Total-IGAP	0.014	-0:5	0.521	mg/L-		(70-130)	-20	2.1

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level), (i) - Indicates surrogate compound. (i) - Indicates internal standard compound.

Page 23 of 28 pages

🔅 eurofins Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory QC

Report: 695546

Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
ICP Metals by EPA	200.7								
Analytical Ba	atch: 1038562					An	alysis Date:	10/27/2017	
LCS1	Calcium Total ICAP		50	48.6	mg/L	97	(85-115)		
LCS2	Calcium Total ICAP		50	49.6	mg/L	99	(85-115)	20	2.2
MBLK	Calcium Total ICAP			<0,5	mg/L				
MRL_CHK	Calcium Total ICAP		1	0.965	mg/L	97	(50-150)		
MS_201710190244	Calcium Total ICAP	70	50	111	mg/L	82	(70-130)		
MS2_201710260311	Calcium Total ICAP	14	50	62.5	mg/L	97	(70-130)		
MSD_201710190244	Calcium Total ICAP	70	50	112	mg/L	83	(70-130)	20	0.82
MSD2_201710260311	Calcium Total ICAP	14	50	59.1	mg/L	90	(70-130)	20	5.6
LCS1	Iron Total ICAP		5	4.88	mg/L	98	(85-115)		
LCS2	Iron Total ICAP		5	4.96	mg/L	99	(85-115)	20	1.6
MBLK	Iron Total ICAP			<0.01	mg/L				
MRL_CHK	Iron Total ICAP		0.02	0.0198	mg/L	99	(50-150)		
MS_201710190244	Iron Total ICAP	ND	5	5.00	mg/L	100	(70-130)		
MS2_201710260311	Iron Total ICAP	ND	5	5.12	mg/L	102	(70-130)		
MSD_201710190244	Iron Total ICAP	ND	5	5.05	mg/L	101	(70-130)	20	0.97
MSD2_201710260311	Iron Total ICAP	ND	5	4.83	mg/L	97	(70-130)	20	5.9
LCS1	Manganese Total ICAP		0.5	0.492	mg/L	98	(85-115)		
LCS2	Manganese Total ICAP		0.5	0.499	mg/L	100	(85-115)	20	1.4
MBLK	Manganese Total ICAP			< 0.001	mg/L				
MRL_CHK	Manganese Total ICAP		0.002	0.00159	mg/L	80	(50-150)		
MS_201710190244	Manganese Total ICAP	ND	0.5	0.502	mg/L	100	(70-130)		
MS2_201710260311	Manganese Total ICAP	0.0021	0.5	0.514	mg/L	102	(70-130)		
MSD_201710190244	Manganese Total ICAP	ND	0.5	0.508	mg/L	101	(70-130)	20	1.3
MSD2_201710260311	Manganese Total ICAP	0.0021	0.5	0.484	mg/L	96	(70-130)	20	6.0
Alkalinity in CaCO	3 units by SM 2320B								
Analytical Ba	•					Ana	alysis Date:	10/27/2017	
LCS1	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)	20	0.0
MBLK	Alkalinity in CaCO3 units			<1	mg/L		120 1101		2.0
MRL CHK	Alkalinity in CaCO3 units		2	2.53	mg/L	126	(50-150)		
MS 201709220455	Alkalinity in CaCO3 units	300	100	376	mg/L	75	(80-120)		
MS_201710260610	Alkalinity in CaCO3 units	160	100	216	mg/L	54	(80-120)		
MSD_201709220455	Alkalinity in CaCO3 units	300	100	377	mg/L	76	(80-120)	20	0.27
MSD_201710260610	Alkalinity in CaCO3 units		100	213	mg/L		(80-120)	20	1.4

Spike recovery is already corrected for native results, Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underfining</u>, Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level), (3) - Indicates internal standard compound. (0) - Indicates internal standard compound.

Page 24 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory QC

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
Alkalinity in CaCO	3 units by SM 2320B					· .			
Analytical B	atch: 1038920					An	alysis Date:	10/27/2017	
LCS1	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)	20	0.0
MBLK	Alkalinity in CaCO3 units			<1	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2	2.39	mg/L	120	(50-150)		
MS_201710180315	Alkalinity in CaCO3 units	230	100	234	mg/L	<u>6</u>	(80-120)		
MS_201710260577	Alkalinity in CaCO3 units	150	100	165	mg/L	19	(80-120)		
MSD_201710180315	Alkalinity in CaCO3 units	230	100	235	mg/L	7.3	(80-120)	20	0.47
MSD_201710260577	Alkalinity in CaCO3 units	150	100	166	mg/L	20	(80-120)	20	0.33
EPA Method 551.1	Trihalomethanes by EPA 551.1								
	atch: 1039158					An	alysis Date:	10/30/2017	
сссн	1,2-Dibromopropane (S)			104	%	104	(80-120)		
CCCH	1,2-Dibromopropane (S)			104	%	104	(80-120)		
CCCM	1,2-Dibromopropane (S)			95.3	%	95	(80-120)		
CCCM	1,2-Dibromopropane (S)			96.1	%	96	(80-120)		
DUP1_201710260330	1,2-Dibromopropane (S)			101	%	101	(80-120)		
DUP2_201710260340	1,2-Dibromopropane (S)			101	%	101	(80-120)		
_CS1	1,2-Dibromopropane (S)			100	%	100	(80-120)		
MBLK	1,2-Dibromopropane (S)			102	%	102	(80-120)		
MRL_CHK	1,2-Dibromopropane (S)			109	%	109	(80-120)		
MS1_201710260329	1,2-Dibromopropane (S)			100	%	100	(80-120)		
MS2_201710260339	1,2-Dibromopropane (S)			106	%	106	(80-120)		
ССН	4-Bromofluorobenzene (I)			98.8	%	99	(80-120)		
CCCH	4-Bromofluorobenzene (I)			104	%	104	(80-120)		
CCCM	4-Bromofluorobenzene (I)			100	%	100	(80-120)		
CCCM	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
OUP1_201710260330	4-Bromofluorobenzene (I)			102	%	102	(80-120)		
DUP2_201710260340	4-Bromofluorobenzene (I)			102	%	102	(80-120)		
_CS1	4-Bromofluorobenzene (I)			102	%	102	(80-120)		
IBLK	4-Bromofluorobenzene (I)			100	%	101	(80-120)		
/IRL_CHK	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
MS1_201710260329	4-Bromofluorobenzene (I)			103	%	103	(80-120)		
MS2_201710260339	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
CCH	Bromodichloromethane		40	38.3	ug/L	96	(80-120)		
CCH	Bromodichloromethane		40	37.8	ug/L		(80-120)		
CCM	Bromodichloromethane		20	19.1	ug/L	95	(80-120)		
inika recruant is already correct	ad for notice results								

Splice recovery is already corrected for native results. Splice which exceed Linits and Method Blanks with positive results are highlighted by <u>Underfining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Dupletotes when the result is not five times the MRL (Minimum Reporting Level). (5) - Indicates unrogate compound, (1) - Indicates internal standard compound.

Page 25 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test Laboratory QC

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
сссм	Bromodichloromethane		20	19.6	ug/L	98	(80-120)		
DUP1_201710260330	Bromodichloromethane	0.74		0.754	ug/L		(0-20)		
DUP2_201710260340	Bromodichloromethane	4.8		4.74	ug/L		(0-20)	20	1.5
LCS1	Bromodichloromethane		20	18.6	ug/L	93	(80-120)		
MBLK	Bromodichloromethane			<0.5	ug/L				
MRL_CHK	Bromodichloromethane		0.5	0.520	ug/L	104	(50-150)		
MS1_201710260329	Bromodichloromethane	15	20	32.9	ug/L	91	(80-120)		
MS2_201710260339	Bromodichloromethane	3.1	40	42.1	ug/L	98	(80-120)		
CCCH	Bromoform		40	39.9	ug/L	100	(80-120)		
CCCH	Bromoform		40	39.7	ug/L	99	(80-120)		
CCCM	Bromoform		20	20.5	ug/L	102	(80-120)		
CCCM	Bromoform		20	20.6	ug/L	103	(80-120)		
DUP1_201710260330	Bromoform	ND		ND	ug/L		(0-20)		
DUP2_201710260340	Bromoform	ND		ND	ug/L		(0-20)		
CS1	Bromoform		20	20.2	ug/L	101	(80-120)		
MBLK	Bromoform			<0.5	ug/L				
MRL_CHK	Bromoform		0.5	0.645	ug/L	129	(50-150)		
AS1_201710260329	Bromoform	ND	20	19.7	ug/L	97	(80-120)		
MS2_201710260339	Bromoform	ND	40	40.3	ug/L	101	(80-120)		
ССН	Chloroform		40	38.8	ug/L	97	(80-120)		
CCCH	Chloroform		40	38.0	ug/L	95	(80-120)		
CCM	Chloroform		20	19.5	ug/L	98	(80-120)		
CCCM	Chloroform		20	20.1	ug/L	101	(80-120)		
UP1_201710260330	Chloroform	1.5		1.53	ug/L		(0-20)	20	1.4
UP2_201710260340	Chloroform	8.7		8.61	ug/L		(0-20)	20	1.5
.CS1	Chloroform		20	19.4	ug/L	97	(80-120)		
IBLK	Chloroform			<0.5	ug/L				
IRL_CHK	Chloroform		0.5	0.602	ug/L	120	(50-150)		
NS1_201710260329	Chloroform	26	20	44.7	ug/L	93	(80-120)		
AS2_201710260339	Chloroform	6.0	40	45.8	ug/L	100	(80-120)		
ССН	Dibromochloromethane		40	39.2	ug/L	98	(80-120)		
ССН	Dibromochloromethane		40	38.9	ug/L	97	(80-120)		
CCM	Dibromochloromethane		20	19,9	ug/L	99	(80-120)		
CCM	Dibromochloromethane		20	20.2	ug/L	101	(80-120)		
UP1_201710260330	Dibromochloromethane	ND		ND	ug/L		(0-20)		
UP2_201710260340	Dibromochloromethane	1.2		1.16	ug/L		(0-20)		
CS1	Dibromochloromethane		20	20.0	ug/L	100	(80-120)		

Spike recovery is already corrected for native results, Spike recovery is already corrected for native results are highlighted by <u>Underlining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for dupticates are advisory only, unless otherwise specified in the method. RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Dupicates when the result is not five times the MRL (Minimum Reporting Level). (5) - Indicates surrogate compound. (1) - Indicates internal standard compound.

Page 26 of 28 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 695546 Project: SPECIAL Group: JC 9450 Jar Test Laboratory QC

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MRL_CHK	Dibromochloromethane		0.5	0.539	ug/L	108	(50-150)		
MS1_201710260329	Dibromochloromethane	4.2	20	23.0	ug/L	94	(80-120)		
MS2_201710260339	Dibromochloromethane	0.74	40	40.5	ug/L	99	(80-120)		
ICP Metals by EPA	200.7								
Analytical Ba	atch: 1039188					An	alysis Date:	10/31/2017	
LCS1	Calcium Total ICAP		50	50.5	mg/L	101	(85-115)		
LCS2	Calcium Total ICAP		50	50.3	mg/L	101	(85-115)	20	0.40
MBLK	Calcium Total ICAP			<0.5	mg/L				
MRL_CHK	Calcium Total ICAP		1	1.12	mg/L	112	(50-150)		
MS_201710260164	Calcium Total ICAP	1.9	50	53.0	mg/L	102	(70-130)		
MS2_201710270013	Calcium Total ICAP	2.7	50	55.6	mg/L	106	(70-130)		
MSD_201710260164	Calcium Total ICAP	1.9	50	53.2	mg/L	103	(70-130)	20	0.46
MSD2_201710270013	Calcium Total ICAP	2.7	50	53.7	mg/L	102	(70-130)	20	3.5
LCS1	Iron Total ICAP		5	5.02	mg/L	100	(85-115)		
LCS2	Iron Total ICAP		5	5.00	mg/L	100	(85-115)	20	0.40
MBLK	Iron Total ICAP			<0.01	mg/L				
MRL_CHK	Iron Total ICAP		0.02	0.0265	mg/L	133	(50-150)		
MS_201710260164	Iron Total ICAP	ND	5	5.07	mg/L	101	(70-130)		
MS2_201710270013	Iron Total ICAP	0.2	5	5.47	mg/L	105	(70-130)		
MSD_201710260164	Iron Total ICAP	ND	5	5.10	mg/L	102	(70-130)	20	0.59
MSD2_201710270013	Iron Total ICAP	0.2	5	5,26	mg/L	101	(70-130)	20	3.9
LCS1	Manganese Total ICAP		0.5	0.503	mg/L	101	(85-115)		
LCS2	Manganese Total ICAP		0,5	0,500	mg/L	100	(85-115)	20	0.60
MBLK	Manganese Total ICAP			< 0.001	mg/L				
MRL_CHK	Manganese Total ICAP		0.002	0.00176	mg/L	88	(50-150)		
MS_201710260164	Manganese Total ICAP	ND	0.5	0.505	mg/L	101	(70-130)		
MS2_201710270013	Manganese Total ICAP	0.0063	0.5	0.535	mg/L	106	(70-130)		
MSD_201710260164	Manganese Total ICAP	ND	0.5	0.509	mg/L	102	(70-130)	20	0.75
MSD2_201710270013	Manganese Total ICAP	0.0063	0.5	0.516	mg/L	102	(70-130)	20	3.7
Total Organic Carb	on by SM 5310C								
Analytical Ba	tch: 1039846					Ana	alysis Date:	11/01/2017	
LCS1	Total Organic Carbon		5	5.13	mg/L	103	(90-110)		
MBLK	Total Organic Carbon			<0.3	mg/L				
MRL_CHK	Total Organic Carbon		0.2	0.245	mg/L	122	(50-150)		
MS_201710260334	Total Organic Carbon	4.4	4	8.54	mg/L	102	(80-120)		
MS2_201710250673	Total Organic Carbon	.6.3	2	8.34	mg/L	100	(80-120)		
MSD_201710260334	Total Organic Carbon	4.4	4	8.52	mg/L	102	(80-120)	20	0.18
Spike recovery is already correct	ed for native results.								

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underfining</u>. Criteria for MS and Dup are actively only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplcates when the result is not five times the MRL (Minimum Reporting Level). (5) - Indicates unrogate compound. (1) - Indicates internal standard compound.

Page 27 of 28 pages

🔅 eurofins Eaton Analytical Laboratory QC Report: 695546 Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Project: SPECIAL Group: JC 9450 Jar Test Goleta Water District QC Type Analyte Native Spiked Recovered Units Yield (%) Limits (%) RPDLimit (%) RPD% MSD2_201710250673 Total Organic Carbon 6.3 2 8.42 mg/L 105 (80-120) 20 0.96 Spike recovery is already corrected for native results. Spike recovery is already corrected for native results are highlighted by <u>Underlining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LOS2-when different a concentration than LCS1 is used. RPD not calculated for LOS2-when different a concentration than LCS1 is used. (0) - Indicates surrogate compound. (1) - Indicates internal standard compound, Page 28 of 28 pages

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

AT-1807

Laboratory Report

for

Goleta Water District 4699 Hollister Avenue Goleta, CA 93117 Attention: Dale Armstrong Fax: 805-968-1844

Date of Issue 11/14/2017 ado EUROFINS EATON ANALYTICAL, INC.

MP6E: Alicia Del Carlo Project Manager

Report:696879 Project: SPECIAL Group: Jar Test PO#: 091213 exp 063014 NTE 75K

* Accredited in accordance with TNI 2009 and ISO/IEC 17025:2005.

* Laboratory certifies that the test results meet all TNI 2009 and ISO/IEC 17025:2005 requirements unless noted under the individual analysis.

Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.
 Test results relate only to the sample(s) tested.

Page 1 of 20 pages

Eaton Analytical

State	Certification Number	State	Certification Number
Alabama	41060	Michigan	9906
Arizona	AZ0778	Mississippi	Certified
Arkansas	Certified	Montana	Cert 0035
California-Monrovia- ELAP	2813	Nebraska	Certified
California-Colton- ELAP	2812	Nevada	CA00006-2016
California-Folsom- ELAP	2820	New Hampshire *	2959
California-Fresno- ELAP	2966	New Jersey *	CA 008
Colorado	Certified	New Mexico	Certified
Connecticut	PH-0107	New York *	11320
Delaware	CA 006	North Carolina	06701
Florida *	E871024	North Dakota	R-009
Georgia	947	Oregon (Primary AB) *	ORELAP 4034
Guam	17-005R	Pennsylvania *	68-565
Hawaii	Certified	Puerto Rico	Certified
Idaho	Certified	Rhode Island	LAO00326
Illinois *	200033	South Carolina	87016
Indiana	C-CA-01	South Dakota	Certified
Iowa - Asbestos	413	Tennessee	TN02839
Kansas *	E-10268	Texas *	T104704230-16-11
Kentucky	90107	Utah *	CA000062017-11
Louisiana *	LA170009	Vermont	VT0114
Maine	CA0006	Virginia *	460260
Maryland	224	Washington	C838
Commonwealth of Northern Marianas Is.	MP0004	EPA Region 5	Certified
Massachusetts	M-CA006	Los Angeles County Sanitation Districts	10264

STATE CERTIFICATION LIST

* NELAP/TNI Recognized Accreditation Bodies

Eurofins Eaton Analytical, Inc.

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629 T | 626-386-1100 F | 626-386-1101 www.EatonAnalytical.com

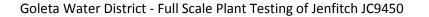
Page 2 of 20 pages

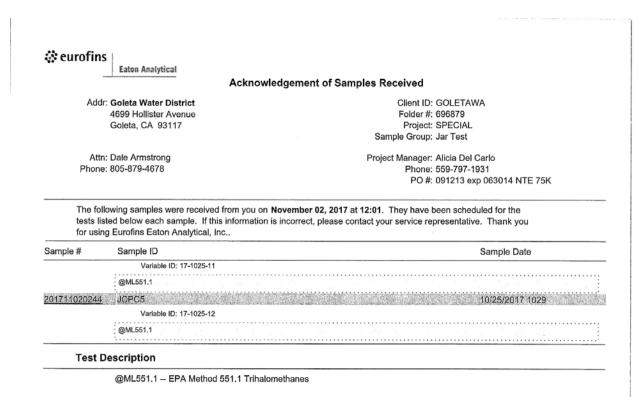
SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Environ- mental (Drinking Water)	Environ- mental (Waste Water)	Water as a Component of Food and Bev/Bev/ Bottled Water	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Environ- mental (Drinking Water)	Environ- mental (Waste Water)	Water as a Component of Food and Bey/Bey Bottled Water
1,4-Dioxane	EPA 522	×		x	Hexavalent Chromium	EPA 218.7	x		x
2,3,7,8-TCDD	Modified EPA 1613B	x		x	Hexavalent Chromium	SM 3500-Cr B		×	
Acrylamide	In House Method (2440)	x		x	Hormones	EPA 539	x		x
Alkalinity	SM 2320B	×	x	x	Hydroxide as OH Calc.	SM 2330B	x		×
Ammonia	EPA 350.1		x	x	Kjeldahl Nitrogen	EPA 351.2		x	
Ammonia	SM 4500-NH3 H		x	x	Legionella	CDC Legionella	x		x
Anions and DBPs by IC	EPA 300.0	×	x	x	Mercury	EPA 245.1	×	x	x
Anions and DBPs by IC	EPA 300.1	×		x	Metals	EPA 200.7 / 200.8	<u>×</u>	x	x
Asbestos Bicarbonate Alkalinity as	EPA 100.2 SM 2320B	×	x	×	Microcystin LR NDMA	ELISA (2360) EPA 521	×		x
HCO3 BOD / CBOD	SM 5210B		x	×	NDMA	TQ In house method based on EPA 521 (2425)	x		×
Bromate	In House Method (2447)	x		×	Nitrate/Nitrite Nitrogen	EPA 353.2	×	x	×
Carbamates	EPA 531.2	x		x	OCL, Pesticides/PCB	EPA 505	x		x
Carbonate as CO3	SM 2330B	x	×	x	Ortho Phosphate	EPA 365.1	×	x	x
Carbonyls	EPA 556	x	^	x	Ortho Phosphate	SM 4500P E		^	x
COD	EPA 410.4 / SM 5220D	^	x		Ortho Phosphorous	SM 4500P E SM 4500P E	×		^
					Oxyhalides Disinfection				
Chloramines Chlorinated Acids	SM 4500-CL G EPA 515.4	x	x	x	Byproducts Perchlorate	EPA 317.0 EPA 331.0	×		×
Chlorinated Acids	EPA 555	x		x	Perchlorate (low and high)	EPA 314.0	x		x
Chlorine Dioxide	SM 4500-CLO2 D	x		x	Perfluorinated Alkyl Acids	EPA 537	×		x
Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	×	x	x	pH	EPA 150.1	×		
Conductivity	EPA 120.1		×		pН	SM 4500-H+B	x	×	x
Conductivity	SM 2510B	×	x	x	Phenyharea Pesticides/ Herbicides	In House Method, based on EPA 532 (2448)	×		x
Corrosivity (Langelier Index)	SM 2330B	×		x	Pseudomonas	IDEXX Pseudalert (2461)	×		x
Cryptosporidium	EPA 1623	×		x	Radium-226	GA Institute of Tech	x		x
Cyanide, Amenable	SM 4500-CN G	×	×		Radium-228	GA Institute of Tech	×		х
Cyanide, Free	SM 4500CN F	x	×	×	Radon-222	SM 7500RN	×		x
Dyanide, Total Dyanogen Chloride	EPA 335.4 In House Method (2470)	x	×	x	Residue, Filterable Residue, Non-filterable	SM 2540C SM 2540D	×	x	x
screen)	EPA 549.2			×	Residue, Total	SM 2540B			
Diquat and Paraquat DBP/HAA	SM 6251B	x			Residue, Volatile	EPA 160.4		x	×
	SM 4500-O G	×	x	×	Semi-VOC	EPA 100.4 EPA 525.2	~	x	
Dissolved Oxygen	SM 5310C	×	~	×	Semi-VOC	EPA 625	×		×
		x		x			×	x	×
3. Coli	(MTF/EC+MUG)	x			Silica	SM 4500-Si D			
5. Coli	CFR 141.21(f)(6)(i)	х		x	Silica	SM 4500-SiO2 C	x	х	
3. Coli	SM 9223		x		Sulfide	SM 4500-S" D		x	
Coli (Enumeration)	SM 9221B.1/ SM 9221F	x		x	Sulfite	SM 4500-SO3B	×	x	×
E. Coli (Enumeration)	SM 9223B	x .		x	Surfactants	SM 5540C	x	x	x
DB/DCBP	EPA 504.1	x			Taste and Odor Analytes	SM 6040E	x		×
DB/DBCP and DBP	EPA 551.1	x		x	Total Coliform (P/A)	SM 9221 A, B	x		×
DTA and NTA	In House Method (2454)	x		x	Total Coliform (Enumeration)	SM 9221 A, B, C	×		x
Indothall	EPA 548.1	x		x	Total Coliform / E. coli	Colisure SM 9223	×		×
Endothall	In-house Method (2445)	x		x	Total Coliform	SM 9221B		х.	
Interococci	SM 9230B	x	x		Total Coliform with Chlorine Present	SM 9221B		×	
ecal Coliform	SM 9221 E (MTF/EC)	x			Total Coliform / E.coli (P/A and Enumeration)	SM 9223	×		x
ecal Coliform	SM 9221C, E (MTF/EC)		x		TOC	SM 5310C	x	x	x
ecal Coliform Enumeration)	SM 9221E (MTF/EC)	x		x	тох	SM 5320B		x	
ecal Coliform with	SM 9221E		x		Total Phenols	EPA 420.1		x	
ecal Streptococci	SM 9230B	x	x		Total Phenols	EPA 420.4	×	x	x
luoride	SM 4500-F C	x	x	×	Total Phosphorous	SM 4500 P E		x	
liardia	EPA 1623	x		x	Turbidity	EPA 180.1	×	x	x
ilyphosate	EPA 547	x		x	Turbidity	SM 2130B	×	x	-
ross Alpha/Beta	EPA 900.0	x	x	x	Uranium by ICP/MS	EPA 200.8	×	rt.	x
ross Alpha Coprecipitation	SM 7110 C	×	×	x	UV 254	SM 5910B	×		· · · · · · · · · · · ·
Iardness	SM 2340B	x	x	x	VOC	EPA 524.2/EPA 524.3	×		x
leterotrophic Bacteria	In House Method (2439)	x		x	VOC	EPA 624		x	×
eterotrophic Bacteria	SM 9215 B	×		×	VOC	EPA SW 846 8260	×		x
exavalent Chromium	EPA 218.6	×	x	x	VOC	In House Method (2411)	×		×
	EFA 218.0	^	^	^	1.00	SM 9610	^		x

ISO 17025 Accredited Method List The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ANAB.

x 750 Royal Oaks Dr., Ste 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com

Version 002 Issued: 09/21/2016


Page 3 of 20 pages


-	Eaton Analytical	
	Acknowled	gement of Samples Received
Addr	Goleta Water District	Client ID: GOLETAWA
	4699 Hollister Avenue Goleta, CA 93117	Folder #: 696879 Project: SPECIAL
	Solisia, OA 35117	Sample Group: Jar Test
	: Dale Armstrong : 805-879-4678	Project Manager: Alicia Del Carlo Phone; 559-797-1931
		PO #: 091213 exp 063014 NTE 75K
tests lis		vember 02, 2017 at 12:01. They have been scheduled for the acorrect, please contact your service representative. Thank you
Sample #	Sample ID	Sample Date
01711020233	JC Control	10/25/2017 0946
	Variable ID: 17-1025-1	n menerana nana meneringkan dan bertangkan dikan meneringkan di kanan dan bertari dan dari bertari dan berbera Peneringkan
	@ML551.1	
01711020234	JC1	10/25/2017 1000
01711020204	Variable ID: 17-1025-2	0/23/2017 1000
	@ML551.1	
01711020235	JG2	10/25/2017 1004
	Variable ID: 17-1025-3	
	@ML551.1	
01711020236	JC3	10/25/2017 0955
	Variable ID: 17-1025-4	
	@ML551.1	, en des relegis mun esse, configit par la dura enfitie par side
01711020237	JC4	10/25/2017 0946
	Variable ID: 17-1025-5	
	@ML551.1	그 같은 것이 집에서 잘 가지는 것은 것이 같이 많이 많이 많이 했다.
01711020238	JC5	10/25/2017 0939
	Variable ID: 17-1025-6	
	@ML551.1	
01711020239	JCPC	10/25/2017 1024
	Variable ID: 17-1025-7	
	@ML551.1	
01711020240	Summer and the second second second	10/05/20147 1029
01711020240	JCPC1 Variable ID: 17-1025-8	10/25/2017 1038
	·····	
	@ML551.1	
01711020241	JCPC2	10/25/2017 1045
	Variable ID: 17-1025-9	
	@ML551.1	
01711020242	JCPC3	10/25/2017 1048
	Variable ID: 17-1025-10	
	@ML551.1	그는 말 것이 아니는 것이 많이 많이 안 한다. 정말이 많다.
01711020243	JCPC4	

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www.EurofinsUS.com/Eaton

Page 4 of 20 pages

 Reported:
 11/14/2017
 Page 2 of 2

 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016
 Tel (626) 386-1100
 Fax (866) 988-3757
 www.EurofinsUS.com/Eaton

Page 5 of 20 pages

	Eaton Analytical	EUROFINS EATON ANAL YTICAL USE ONLY.	ALYTIC	NI USE C	NULY:	And a second			A second se	a family of the second second second
		LOGIN COMMENTS:					SAMPLES CHECKED AGAINST COC RV.	CKED AGAI	NST COC RV.	Ru
onrovia,	750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629						0	AMPLES LO	SAMPLES LOGGED IN BY:	4
none: 62	Phone: 626 386 1100	SAMPLE TEMP RECEIVED AT:	EIVED	Ë			SAMPLES RE	C'D DAY OF	1	(check for ves)
1X: 626	Fax: 626 386 1101 800 668 1 ABS / 800 668 60071	Monrovia (Other)		IR Gun ID =	r	10A (Observation=	(o. <u>2,0</u>	() () () ()		
ebsite:	Website: www.EatonAnalvtical.com	Compliance Acceptan	ce Criteri	a: (Chemis	ry: 4±2°C	Diale -		5	1	-
		TYPE OF ICE: Real Synthetic No Ice No Ice METHOD OF SHIPMENT: PICk-Up / Walk-Inc	HIPMEI	Synthetic _	N / dŋ-	1 4	CONDITION OF ICE: Frozen Partially Frozen	Partially Frozen	n Thawed	VIN
COMPL	TO BE COMPLETED BY SAMPLER:						(check for yes)		(che	(check for ves)
ANYIA	COMPANY/AGENCY NAME:	System Number:				COM	COMPLIANCE SAMPLES	NON-COMPL	NON-COMPLIANCE SAMPLES	
GOL	GOLETA WATER DISTRICT		CA 4210004	004		Type of samples	- Requires state forms REGULATIOI Type of samples (circle one): Routine SPECIAL convertemanton	REGULATIO	N INVOLVED:	(eo. SDWA. NPDES. etc.)
EEA CLIENT CODE:	CODE: COC ID:	SAMPLE GROUP:				SEE ATTACI	SEE ATTACHED KIT ORDER FOR ANALYSES	LYSES	(chec	es), <u>OR</u>
		,L	Jar Test	st		List ALL ANA	List ALL ANALYSES REQUIRED (enter number of bottles sent for each test for each sample)	per of bottles :	sent for each test for	each sample)
equeste	TAT requested: rush by adv notice only	STD_1 WK X 3 day.	3 day	2 day	1 day					
BTAQ BJ9MA8 BMIT	SAMPLEID	CLIENT LAB ID	- and a vid	- XIRTAM denD	etizoqmoO	1.122.11(0)			SACON	SAMPLER COMMENTS
10/25/17 0946	JC Control	17-1025-1	oti	other					Please No	Please Note: 1 week
10/25/17 1000	JCI	17-1025-2	ot	other					IVI Ledn	ssted.
10/25/17 1004	JC2	17-1025-3	G	other		X				
10/25/17 0955	JC3	17-1025-4	ot	other						
10/25/17 0946	0946 JC4	17-1025-5	ot	other		X				
10/25/17 0939	JCS	17-1025-6	ott	other						
10/25/17 1024	JCPC	17-1025-7	ot	other						
10/25/17 1038	1038 JCPC1	17-1025-8	ott	other						
10/25/17 1045	1045 JCPC2	17-1025-9	G	other						
10/25/17 1048	1048 JCPC3	17-1025-10	ot	other						
VTRIX.	• MATRIX TYPES: RSW = Raw Surface Water	<pre>r CFW = Chlor(am)inated Finished Water r FW = Other Finished Water</pre>	inated F led Wal	inished	Water	SEAW = Sea Water WW = Waste Water	later BW = Bottled Water later SW = Storm Water	SO = Soil SL = Sludge		0 = Other - Please Identify
10.1	11/1 / BIGNATURE			PRINT	PRINT NAME		COMPANY/TITLE		DATE	TIME
MA: YA DELED BY: W	W WYYY			Dale A	Dale Armstrong		Goleta Water District/Laboratory Supervisor	Supervisor	11/1/15	1400
RELINQUISHED BY	Will that an			Dale A	Dale Armstrong		Goleta Water District/Laboratory Supervisor	Supervisor	11/1/17	1400
RECEIVED BY:	yould un		ĺ.	Peve	1.1	Mer. (les	EEA		11/20/11	10:21
RELINQUISHED BY					1					
RECEIVED BY:										

Goleta Water District - Full Scale Plant Testing of Jenfitch JC9450

Page 6 of 20 pages

Eaton Analytical

CHAIN OF CUSTODY RECORD

EUROFINS EATON ANALYTICAL USE ONLY:	LOGIN COMMENTS:	SAMPLE TEMP RECEIVED AT: (Other) IR Gun ID =
	750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629	Phone: 626 386 1100 Fex: 626 386 1101

Phone: 626 386 1100	SAMPLE TEMP RECEIVED AT:	ED AT:	
Fax: 626 386 1101	(Other)	(Other) IR Gun ID =	(Observation=
800 566 LABS (800 566 5227)	Monrovia	IR Gun ID = $5/0$ (Observation= 0.5	(Observation= 0 < 5
Website: www.EatonAnalytical.com	Compliance Acceptance C	Compliance Acceptance Criteria: (Chemistry: 4 \pm 2 *C) (Microbiology: < 10*C)	plogy: < 10°C)
	TYPE OF ICE: Real	TYPE OF ICE: Real V Synthetic No Ice CONDITION OF ICE.	CONDITION OF ICE.

(check for yes)

SAMPLES CHECKED AGAINST COC BY:

SAMPLES LOGGED IN BY:

]₆ 0

PLE TEMP RECEIVED AT:	AT:		SAMPLES REC'D DAY OF COLLECTION?	Ļ
(Other) IR Gun ID =	Gun ID =	Observation= "C	(Corr.Factor C) (Final =	1
Monrovia IR	Gun ID = 570A	Observation= 0 < 5 °C	IR Gun ID = 570 (Observation= 0.5 °C) (Corr.Factor 0.2 °C) (Final = 0.7	
ompliance Acceptance Criteri	ompliance Acceptance Criteria: (Chemistry: 4 \pm 2 4 C) (Microbiology: < 10^{4}C)	llogy: < 10°C)		
OF ICE: Real V S	ynthetic No Ice	CONDITION OF ICE:	: OF ICE: Real V Synthetic No Ice CONDITION OF ICE: Frozen Partially Frozen Thave	WG
METHOD OF SHIPME	NT: Pick-Up / Walk-In /	Edex UPS / DHL / /	METHOD OF SHIPMENT: Pick-Up / Walk-In / Fedex DPS / DHL / Area Fact / Top Line / Other:	

10.6	E COM	TO BE COMPLETED BY SAMPLER:	5								J	(check for yes)	r yes)				(check for yes)	or yes)
S	PANY	COMPANY/AGENCY NAME:		System Number:				ខ	COMPLIANCE SAMPLES	VCE S/	MPLE	s	ž	ON-COM	MPLIA	NCE SAM	NON-COMPLIANCE SAMPLES	
	60	GOLETA WATER DISTRICT	R DISTRICT	CA 4210004	21000	4		- Requires state forms REGULATION	- Requ	Requires state forms	the form	ls l	R	EGULA	II NOI	REGULATION INVOLVED:		
EEA	CLIEN	EEA CLIENT CODE:	COC ID:	SAMPLE GROUP:				SEE ATTACHED KIT ORDER FOR ANAL YSES	HED	KIT O	RDEF	FOR	ANAL	VSES	N	1.01	Ichack for vest OR	OR OR
				Jar	Jar Test			List ALL ANALYSES REQUIRED (enter number of bottles sent for each test for each sample)	IALYSE	ES REC	UIREI	D (enter	numbei	r of bott	es sen	t for each	test for eac	ch samole)
TAT	senbeu	TAT requested: rush by adv notice only	ptice only	STD_1 wk X 3 day 2 day 1 day	ay2		1 day		┝		\vdash		-		\vdash			
319MA2	ATAD SAMPLE	BMIT	SAMPLE ID	CLIENT LAB ID	• XIRTAM	denĐ	etisoqmoO	เบรราพต			/						SAMPLER COMMENTS	LER
1/22/01		1043 JCPC 4	1	17-1025-11	other	X		X			\vdash	-	\vdash	E	-	đ i	Please Note: 1 week	1 week
10/25/17		1029 JCPC 5	I	17-1025-12	other	X			\vdash				-		-	<u>≤</u>	IAI requested.	ri -
											\vdash	_	-		-			
	-								\vdash		\vdash		\vdash	t	+			
											\vdash							
										2					\vdash			
									\vdash		-		-		\vdash			
	_								-		\vdash		\vdash		-			
									\vdash				-		-			
															-			
W,	ATRU	X TYPES: RSW = RGW =	* MATRIX TYPES: RSW = Raw Surface Water RGW = Raw Ground Water	CFW = Chlor(am)inated Finished Water FW = Other Finished Water	ted Finit	shed W	ater	SEAW = Sea Water WW = Waste Water	Water Water		BW = SW = 3	BW = Bottled Water SW = Storm Water	Nater /ater	SO = Soil SL = Slud	SO = Soil SL = Sludge		0 = Other - Please Identify	ise Identify
		4111	SIGNATURE			PRINT NAME	VAME				COM	COMPANY/TITLE	щ			DATE		TIME
SAM	SMAPLED BY: 01	dull ataly	16		۵	ale Arm	Date Armstrong		Golet	a Wate	r Distri	Goleta Water District/Laboratory Supervisor	atory S	uperviso	2	71/1/17	2	1400
RELI	RELINQUISHED BY	ED BY: 1/ 1/ 1/			ľ	Dele Ann			1			1 1 1 1	-		+			

Page 7 of 20 pages

KINQUISHED BY CEIVED BY:

ECENED BY:

QA FO 0029.2 (Version 2) (08/28/2014)

A/A

Thawed

PAGE 2 OF 2

10:21

5

1400

11/1/17 100

Goleta Water District/Laboratory Supervisor

ちのみ

Ł Ler

Dale Armstrong Paul

11/1/2017 FedEx Ship Manager - Print Your Label(s) 5 0201 MONROVIA CA 91016 (559) 797-1931 REF. SANTA BARBARA, CA 93110 UNITED STATES US EUROFINS EATON ANALYTICAL 750 ROYAL OAKS DRIVE SUITE 100 ALICIA DEL CARLO 7706 4695 2418 婯 AVENUE (805) 879-4678 DEPT PRIORITY OVERNIGHT DIAC N BILL SENDER THU - 02 NOV 10:30A MGT: 50 883027 CA-US Tega BUR 91016 549.GE877/104C After printing this label: Use the Print' button on this page to print your label to your laser or inkjet printer.
 Fold the printed page along the horizontal line. 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned. Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number. Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. https://www.fedex.com/shipping/shipmentConfirmationAction.handle?method=doContinue Page 8 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Comments

Report: 696879 Project: SPECIAL Group: Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

The Comments Report may be blank if there are no comments for this report.

Page 9 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Hits

Samples Received on:

11/02/2017 12:01

Report: 696879

Project: SPECIAL Group: Jar Test

Goleta Water District Dale Armstrong

4699 Hollister Avenue Goleta, CA 93117

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
	201711020233	JC Control				
11/03/2017 15:0	8 Bromodichloromethane		24		ug/L	0.5
11/04/2017 13:3	0 Chloroform		110		ug/L	1
11/03/2017 15:0	8 Dibromochloromethane		6.2		ug/L	0.5
11/03/2017 15:0	8 Total Trihalomethanes		140	80	ug/L	0.5
	201711020234	JC1				
11/03/2017 00:4	9 Bromodichloromethane		29		ug/L	0.5
11/03/2017 00:4	9 Bromoform		0.73		ug/L	0.5
11/04/2017 00:5	1 Chloroform		74		ug/L	1
11/03/2017 00:4	9 Dibromochloromethane		9.5		ug/L	0.5
11/03/2017 00:4	9 Total Trihalomethanes		110	80	ug/L	0.5
	201711020235	JC2				
11/03/2017 01:3	9 Bromodichloromethane		30		ug/L	0.5
11/03/2017 01:3	9 Bromoform		0.56		ug/L	0.5
11/04/2017 01:4	2 Chloroform		93		ug/L	1
11/03/2017 01:3	Dibromochloromethane		9.1		ug/L	0.5
11/03/2017 01:3	9 Total Trihalomethanes		130	80	ug/L	0.5
	201711020236	JC3				
11/03/2017 02:2	Bromodichloromethane		29		ug/L	0.5
11/03/2017 02:2	Bromoform		0.50		ug/L	0.5
11/04/2017 02:3	2 Chloroform		99		ug/L	1
11/03/2017 02:2	Dibromochloromethane		8.4		ug/L	0.5
11/03/2017 02:2	9 Total Trihalomethanes		140	80	ug/L	0.5
	201711020237	JC4				
11/03/2017 02:5	5 Bromodichloromethane		28		ug/L	0.5
11/04/2017 02:5	3 Chloroform		110		ug/L	2.5
11/03/2017 02:5	5 Dibromochloromethane		7.4		ug/L	0.5
11/03/2017 02:5	5 Total Trihalomethanes		140	80	ug/L	0.5
	201711020238	JC5				
11/03/2017 03:2	Bromodichloromethane		28		ug/L	0.5
11/04/2017 03:2	3 Chloroform		120		ug/L	2.5
11/03/2017 03:2	Dibromochloromethane		6.5		ug/L	0.5
11/03/2017 03:2	Total Trihalomethanes		150	-80	ug/L	0.5
	201711020239	ICPC				

201711020239 JCPC

SUMMARY OF POSITIVE DATA ONLY

Page 10 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Laboratory Hits

Samples Received on:

11/02/2017 12:01

Report: 696879

Project: SPECIAL

Group: Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Analyzed Sample ID Analyte Result Federal MCI Units MRL 11/03/2017 03:45 Bromodichloromethane 27 ug/L 0.5 11/04/2017 03:48 Chloroform 140 ug/L 2.5 11/03/2017 03:45 Dibromochloromethane 5.7 ug/L 0.5 11/03/2017 03:45 Total Trihalomethanes 170 80 ug/L 0.5 201711020240 JCPC1 11/03/2017 04:10 Bromodichloromethane 28 ug/L 0.5 11/03/2017 04:10 Bromoform 0.50 ug/L 0.5 11/04/2017 04:13 Chloroform 89 ug/L 1 11/03/2017 04:10 Dibromochloromethane 8.1 ug/L 0.5 11/03/2017 04:10 Total Trihalomethanes 120 80 ug/L 0.5 201711020241 JCPC2 11/03/2017 06:17 Bromodichloromethane 28 ug/L 0.5 11/03/2017 06:17 Bromoform 0.68 ug/L 0.5 11/04/2017 06:20 Chloroform 81 ug/L 2.5 11/03/2017 06:17 Dibromochloromethane 9.2 ug/L 0.5 11/03/2017 06:17 Total Trihalomethanes 120 80 ug/L 0.5 201711020242 JCPC3 11/03/2017 07:07 Bromodichloromethane 28 ug/L 0.5 11/03/2017 07:07 Bromoform 0.64 ug/L 0.5 11/04/2017 07:10 Chloroform 82 ug/L 1 11/03/2017 07:07 Dibromochloromethane 8.8 ug/L 0.5 11/03/2017 07:07 Total Trihalomethanes 120 80 ug/L 0.5 201711020243 JCPC4 11/03/2017 13:26 Bromodichloromethane 28 ug/L 0.5 11/03/2017 13:26 Bromoform 0.66 ug/L 0.5 11/04/2017 11:49 Chloroform 90 ug/L 1 11/03/2017 13:26 Dibromochloromethane 8,9 ug/L 0,5 11/03/2017 13:26 Total Trihalomethanes 130 80 ug/L 0.5 201711020244 JCPC5 11/03/2017 14:17 Bromodichloromethane 27 ug/L 0.5 11/03/2017 14:17 Bromoform 0.63 ug/L 0.5 11/04/2017 12:39 Chloroform 96 ua/L 1 11/03/2017 14:17 Dibromochloromethane 8,3 ug/L 0.5 11/03/2017 14:17 Total Trihalomethanes 130 80 ug/L 0.5

SUMMARY OF POSITIVE DATA ONLY

Page 11 of 20 pages

🔅 eurofins **Eaton Analytical** Laboratory Data Report: 696879 Tel: (626) 386-1100 Project: SPECIAL Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Group: Jar Test **Goleta Water District** Samples Received on: **Dale Armstrong** 11/02/2017 12:01 4699 Hollister Avenue Goleta, CA 93117 Prepped Prep Batch Analytical Batch Analyzed Method Analyte Result Units MRL Dilution JC Control (201711020233) Sampled on 10/25/2017 0946 Variable ID: 17-1025-1 EPA 551.1 - EPA Method 551.1 Trihalomethanes 11/02/17 11/03/17 15:08 1040021 1040257 (EPA 551.1) Bromodichloromethane 24 ug/L 0.5 1 11/02/17 11/03/17 15:08 1040257 1040021 (EPA 551.1) Bromoform ND 0.5 ug/L 1 1040257 11/02/17 11/04/17 13:30 1040021 (EPA 551.1) Chloroform 110 ug/L 1 2 11/02/17 11/03/17 15:08 1040257 1040021 (EPA 551.1) Dibromochloromethane 6.2 0.5 ug/L 1 11/02/17 11/03/17 15:08 1040021 1040257 (EPA 551.1) Total Tribalomethanes 140 ug/L 0.5 1 11/02/17 11/03/17 15:08 1040021 1040257 (EPA 551.1) 1,2-Dibromopropane 105 % 1 1040257 11/02/17 11/03/17 15:08 1040021 (EPA 551.1) 4-Bromofluorobenzene 99 % 1 JC1 (201711020234) Sampled on 10/25/2017 1000 Variable ID: 17-1025-2 EPA 551.1 - EPA Method 551.1 Trihalomethanes Bromodichloromethane 11/02/17 11/03/17 00:49 1040014 1040255 (EPA 551.1) 29 ug/L 0.5 1 11/02/17 11/03/17 00:49 1040014 1040255 (EPA 551.1) Bromoform 0.73 ug/L 0.5 1 11/02/17 11/04/17 00:51 1040014 1040255 (EPA 551.1) Chloroform 74 ug/L 2 1 11/02/17 11/03/17 00:49 1040255 1040014 (EPA 551.1) Dibromochloromethane 9.5 ug/L 0.5 1 11/02/17 11/03/17 00:49 1040014 1040255 (EPA 551.1) Total Trihalomethanes 110 ug/L 0.5 1 11/02/17 11/03/17 00:49 1040255 1040014 (EPA 551.1) 1,2-Dibromopropane 103 % 1 11/02/17 11/03/17 00:49 1040014 1040255 (EPA 551.1) 4-Bromofluorobenzene 99 % 1 JC2 (201711020235) Sampled on 10/25/2017 1004 Variable ID: 17-1025-3 EPA 551.1 - EPA Method 551.1 Trihalomethanes 11/02/17 11/03/17 01:39 1040014 1040255 Bromodichloromethane 30 (EPA 551.1) ug/L 0.5 1 11/02/17 11/03/17 01:39 1040014 1040255 (EPA 551.1) Bromoform 0.56 ug/L 0.5 1 11/02/17 11/04/17 01:42 1040014 1040255 (EPA 551.1) Chloroform 93 ua/L 1 2 11/02/17 11/03/17 01:39 1040014 1040255 (EPA 551.1) Dibromochloromethane 9.1 ug/L 0.5 1 11/02/17 11/03/17 01:39 1040014 1040255 (EPA 551.1) **Total Trihalomethanes** 130 ug/L 0.5 1 11/02/17 11/03/17 01:39 1040014 1040255 (EPA 551.1) 1,2-Dibromopropane 101 % 1 11/02/17 11/03/17 01:39 1040014 1040255 (EPA 551.1) 4-Bromofluorobenzene 99 % 1 JC3 (201711020236) Sampled on 10/25/2017 0955 Variable ID: 17-1025-4 EPA 551.1 - EPA Method 551.1 Trihalomethanes 11/02/17 11/03/17 02:29 1040014 1040255 (EPA 551.1) Bromodichloromethane 29 0.5 ug/L 1 11/02/17 11/03/17 02:29 1040014 1040255 (EPA 551.1) Bromoform 0.50 ua/L 0.5 1 11/02/17 11/04/17 02:32 1040014 1040255 (EPA 551.1) Chloroform 99 ug/L 2 1 11/02/17 11/03/17 02:29 1040255 1040014 (EPA 551.1) Dibromochloromethane 8.4 ug/L 0.5 1 1040255 11/02/17 11/03/17 02:29 1040014 (EPA 551.1) Total Tribalomethanes 140 ug/L 0.5 1 11/02/17 11/03/17 02:29 1040014 1040255 (EPA 551.1) 1,2-Dibromopropane 96 % 1 Rounding on totals after summation, (c) - indicates calculated results

Page 12 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Report: 696879 Project: SPECIAL Group: Jar Test Laboratory Data

Samples Received on:

11/02/2017 12:01

Goleta Water District Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
/02/17	11/03/17 02:29	1040014	1040255	(EPA 551.1)	4-Bromofluorobenzene	99	%		1
C4 (20	1711020237)					Sam	pled on 10/25	/2017 094	6
		le ID: 17-1025							
1/00/47			- EPA Method 5						
1/02/17	11/03/17 02:55 11/03/17 02:55	1040014 1040014	1040255 1040255	(EPA 551.1)	Bromodichloromethane	28	ug/L	0.5	1
				(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
	11/04/17 02:58 11/03/17 02:55	1040014 1040014	1040255 1040255	(EPA 551.1)	Chloroform	110	ug/L	2.5	5
	11/03/17 02:55	1040014		(EPA 551.1)	Dibromochloromethane	7.4	ug/L	0.5	1
	11/03/17 02:55		1040255	(EPA 551.1)	Total Trihalomethanes	140	ug/L	0.5	1
	11/03/17 02:55	1040014 1040014	1040255	(EPA 551.1)	1,2-Dibromopropane	94	%		1
		1040014	1040255	(EPA 551.1)	4-Bromofluorobenzene	99	%		1
C5 (20	1711020238)	- ID: 47 4005				Sam	pled on 10/25	/2017 093	9
		e ID: 17-1025- EPA 551.1 ·	-₀ - EPA Method 5	51.1 Trihalom	ethanes				
1/02/17	11/03/17 03:20	1040014	1040255	(EPA 551.1)	Bromodichloromethane	28	ug/L	0.5	1
1/02/17	11/03/17 03:20	1040014	1040255	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
1/02/17	11/04/17 03:23	1040014	1040255	(EPA 551.1)	Chloroform	120	ug/L	2.5	5
1/02/17	11/03/17 03:20	1040014	1040255	(EPA 551.1)	Dibromochloromethane	6.5	ug/L	0.5	1
1/02/17	11/03/17 03:20	1040014	1040255	(EPA 551.1)	Total Trihalomethanes	150	ug/L	0.5	1
1/02/17	11/03/17 03:20	1040014	1040255	(EPA 551.1)	1,2-Dibromopropane	103	%		1
1/02/17	11/03/17 03:20	1040014	1040255	(EPA 551.1)	4-Bromofluorobenzene	100	%		1
CPC (2	01711020239)				Sam	pled on 10/25	2017 102	4
		D: 17-1025-	7			ouiii		LOTI TOL	•
	E	EPA 551.1 ·	EPA Method 5	51.1 Trihalom	ethanes				
1/02/17	11/03/17 03:45	1040014	1040255	(EPA 551.1)	Bromodichloromethane	27	ug/L	0.5	1
1/02/17	11/03/17 03:45	1040014	1040255	(EPA 551.1)	Bromoform	ND	ug/L	0.5	1
1/02/17	11/04/17 03:48	1040014	1040255	(EPA 551.1)	Chloroform	140	ug/L	2.5	5
1/02/17	11/03/17 03:45	1040014	1040255	(EPA 551.1)	Dibromochloromethane	5.7	ug/L	0.5	1
1/02/17	11/03/17 03:45	1040014	1040255	(EPA 551.1)	Total Trihalomethanes	170	ug/L	0.5	1
1/02/17	11/03/17 03:45	1040014	1040255	(EPA 551.1)	1,2-Dibromopropane	96	%		1
1/02/17	11/03/17 03:45	1040014	1040255	(EPA 551.1)	4-Bromofluorobenzene	99	%		1
CPC1	201711020240	0)				Sam	pled on 10/25	2017 103	8
		D: 17-1025-							
10047			EPA Method 5						
	11/03/17 04:10	1040014	1040255	(EPA 551.1)	Bromodichloromethane	28	ug/L	0.5	1
	11/03/17 04:10	1040014	1040255	(EPA 551.1)	Bromoform	0.50	ug/L	0.5	1
	11/04/17 04:13	1040014	1040255	(EPA 551.1)	Chloroform	89	ug/L	1	2
	11/03/17 04:10	1040014	1040255	(EPA 551.1)	Dibromochloromethane	8.1	ug/L	0.5	1
/02/17	11/03/17 04:10	1040014	1040255	(EPA 551.1)	Total Trihalomethanes	120	ug/L	0.5	1

Rounding on totals after summation. (c) - indicates calculated results

Page 13 of 20 pages

🔅 eurofins Eaton Analytical Report: 696879 Tel: (626) 386-1100 Project: SPECIAL Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227) Group: Jar Test **Goleta Water District** Dale Armstrong 4699 Hollister Avenue Goleta, CA 93117 Prepped Analyzed Prep Batch Analytical Batch Method Analyte Result 11/02/17 11/03/17 04:10 1040014 1040255 (EPA 551.1) 1.2-Dibromopropane 99 11/02/17 11/03/17 04:10 1040014 1040255 (EPA 551.1) 4-Bromofluorobenzene 100 JCPC2 (201711020241) Variable ID: 17-1025-9 EPA 551.1 - EPA Method 551.1 Trihalomethanes 11/02/17 11/03/17 06:17 1040014 1040255 (EPA 551.1) Bromodichloromethane 28 11/02/17 11/03/17 06:17 1040014 1040255 0.68 (EPA 551.1) Bromoform 11/02/17 11/04/17 06:20 1040255 1040014 Chloroform (EPA 551.1) 81 11/02/17 11/03/17 06:17 1040014 1040255 (EPA 551.1) Dibromochloromethane 9.2 11/02/17 11/03/17 06:17 1040255 1040014 (EPA 551.1) **Total Trihalomethanes** 120 11/02/17 11/03/17 06:17 1040014 1040255 (EPA 551.1) 1,2-Dibromopropane 104 11/02/17 11/03/17 06:17 1040255 1040014 4-Bromofluorobenzene (EPA 551.1) 101 JCPC3 (201711020242) Variable ID: 17-1025-10 EPA 551.1 - EPA Method 551.1 Trihalomethanes 1040014 1040255 (EPA 551.1) Bromodichloromethane 1040014 1040255 (EPA 551.1) Bromoform 1040014 1040255 (EPA 551.1) Chloroform 1040014 1040255 (EPA 551.1) Dibromochloromethane

11/02/17 11/03/17 07:07 28 ug/L 0.5 1 11/02/17 11/03/17 07:07 0.64 ua/L 0.5 1 11/02/17 11/04/17 07:10 82 ug/L 2 1 11/02/17 11/03/17 07:07 8.8 0.5 ug/L 1 11/02/17 11/03/17 07:07 1040014 1040255 (EPA 551.1) **Total Trihalomethanes** 120 ug/L 0.5 1 11/02/17 11/03/17 07:07 1040014 1040255 (EPA 551.1) 1,2-Dibromopropane 97 % 1 11/02/17 11/03/17 07:07 1040014 1040255 (EPA 551.1) 4-Bromofluorobenzene 101 % 1 JCPC4 (201711020243) Sampled on 10/25/2017 1043 Variable ID: 17-1025-11 EPA 551.1 - EPA Method 551.1 Trihalomethanes 11/02/17 11/03/17 13:26 1040021 1040257 (EPA 551.1) Bromodichloromethane 28 ug/L 0.5 1 11/02/17 11/03/17 13:26 1040021 1040257 (EPA 551.1) Bromoform 0.66 ug/L 0.5 1 11/02/17 11/04/17 11:49 1040257 1040021 (EPA 551.1) Chloroform 90 ug/L 2 1 11/02/17 11/03/17 13:26 1040257 1040021 (EPA 551.1) Dibromochloromethane 89 ug/L 0.5 1 11/02/17 11/03/17 13:26 1040021 1040257 **Total Trihalomethanes** (EPA 551.1) 130 ug/L 0.5 1 11/02/17 11/03/17 13:26 1040257 1040021 (EPA 551.1) 1.2-Dibromopropane 111 % 1 11/02/17 11/03/17 13:26 1040021 1040257 4-Bromofluorobenzene (EPA 551.1) 100 % 1 JCPC5 (201711020244) Sampled on 10/25/2017 1029 Variable ID: 17-1025-12 EPA 551.1 - EPA Method 551.1 Trihalomethanes 11/02/17 11/03/17 14:17 1040021 1040257 (EPA 551.1) Bromodichloromethane 27 ug/L 0.5 1 11/02/17 11/03/17 14:17 1040021 1040257 (EPA 551.1) Bromoform 0.63 ug/L 0.5 1 11/02/17 11/04/17 12:39 1040021 1040257 (EPA 551.1) Chloroform 96 ug/L 1 2 11/02/17 11/03/17 14:17 1040021 1040257 (EPA 551.1) Dibromochloromethane 8.3 ug/L 0.5 1

Rounding on totals after summation (c) - indicates calculated results Laboratory Data

Samples Received on: 11/02/2017 12:01

Units

%

%

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

Sampled on 10/25/2017 1048

Sampled on 10/25/2017 1045

MRL

0.5

0.5

2.5

0.5

0.5

Dilution

1

1

5

1

1

1

1

Page 14 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory Data

Samples Received on:

11/02/2017 12:01

Report: 696879 Project: SPECIAL Group: Jar Test

Goleta Water District Dale Armstrong 4699 Hollister Avenue

🔅 eurofins

Goleta, CA 93117

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
11/02/17	11/03/17 14:17	1040021	1040257	(EPA 551.1)	Total Trihalomethanes	130	ug/L	0.5	1
11/02/17	11/03/17 14:17	1040021	1040257	(EPA 551.1)	1,2-Dibromopropane	109	%		1
11/02/17	11/03/17 14:17	1040021	1040257	(EPA 551.1)	4-Bromofluorobenzene	98	%		1

Rounding on totals after summation. (c) - indicates calculated results

Page 15 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Goleta Water District

EPA Method 551.1 Trihalomethanes Prep Batch: 1040014 Analytical Batch: 1040255

110p Baten: 1040014	Analytical Daten.
201711020234	JC1
201711020234	JC1
201711020235	JC2
201711020235	JC2
201711020236	JC3
201711020236	JC3
201711020237	JC4
201711020237	JC4
201711020238	JC5
201711020238	JC5
201711020239	JCPC
201711020239	JCPC
201711020240	JCPC1
201711020240	JCPC1
201711020241	JCPC2
201711020241	JCPC2
201711020242	JCPC3
201711020242	JCPC3

EPA Method 551.1 Trihalomethanes

Prep Batch: 1040021 Analytical Batch: 1040257

201711020233	JC Control
201711020233	JC Control
201711020243	JCPC4
201711020243	JCPC4
201711020244	JCPC5
201711020244	JCPC5

Laboratory QC Summary

Report: 696879 Project: SPECIAL Group: Jar Test

Analysis Date: 11/04/2017

Analyzed by: YIV3 Analyzed by: YIV3

Analysis Date: 11/04/2017

Analyzed by: YIV3 Analyzed by: YIV3

Page 16 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory QC

Report: 696879

Project: SPECIAL Group: Jar Test

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
	Trihalomethanes by EPA 551.1				2	c			
Analytical Ba	atch: 1040255					Ana	alysis Date:	11/02/2017	
СССН	1,2-Dibromopropane (S)			100	%	100	(80-120)		
СССН	1,2-Dibromopropane (\$)			92.5	%	92	(80-120)		
сссн	1,2-Dibromopropane (S)			100	%	100	(80-120)		
CCCM	1,2-Dibromopropane (S)			97.7	%	98	(80-120)		
CCCM	1,2-Dibromopropane (S)			98.0	%	98	(80-120)		
DUP1_201711020235	1,2-Dibromopropane (S)			104	%	104	(80-120)		
DUP2_201711020242	1,2-Dibromopropane (S)			98.1	%	98	(80-120)		
LCS1	1,2-Dibromopropane (S)			97.2	%	97	(80-120)		
MBLK	1,2-Dibromopropane (S)			98.3	%	98	(80-120)		
MRL_CHK	1,2-Dibromopropane (S)			98.8	%	99	(80-120)		
MS1_201711020234	1,2-Dibromopropane (S)			108	%	108	(80-120)		
MS2_201711020241	1,2-Dibromopropane (S)			93.4	%	93	(80-120)		
СССН	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
ССН	4-Bromofluorobenzene (I)			100	%	100	(80-120)		
ССН	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
CCM	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
CCM	4-Bromofluorobenzene (I)			103	%	103	(80-120)		
OUP1_201711020235	4-Bromofluorobenzene (I)			99.8	%	100	(80-120)		
OUP2_201711020242	4-Bromofluorobenzene (I)			99.6	%	100	(80-120)		
CS1	4-Bromofluorobenzene (I)			99.7	%	100	(80-120)		
IBLK	4-Bromofluorobenzene (I)			99.6	%	100	(80-120)		
MRL_CHK	4-Bromofluorobenzene (I)			100	%	100	(80-120)		
IS1_201711020234	4-Bromofiuorobenzene (I)			100	%	100	(80-120)		
IS2_201711020241	4-Bromofluorobenzene (I)			98.0	%	98	(80-120)		
CCH	Bromodichloromethane		40	38.8	ug/L	97	(80-120)		
CCCH	Bromodichloromethane		40	38.2	ug/L	96	(80-120)		
ссн	Bromodichloromethane		40	38.9	ug/L	97	(80-120)		
CCM	Bromodichloromethane		20	18.6	ug/L	93	(80-120)		
CCM	Bromodichloromethane		20	18.5	ug/L	92	(80-120)		
UP1_201711020235	Bromodichloromethane	30		32.0	ug/L		(0-20)	20	4.8
UP2_201711020242	Bromodichloromethane	28		27.1	ug/L		(0-20)	20	3.6
CS1	Bromodichloromethane		20	18.5	ug/L	93	(80-120)		
IBLK	Bromodichloromethane			<0.5	ug/L				
IRL_CHK	Bromodichloromethane		0.5	0.494	ug/L	99	(50-150)		
	Bromodichloromethane	29	20	49.6	ug/L	103	(80-120)		

Spike recovery is already corrected for native results. Spike recovery is already corrected for native results are highlighted by <u>Underfining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for dupticates are advisory only, unless otherwise specified in the method. RPD not calculated for LOS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level). (§) - Indicates surcedulated compound.

Page 17 of 20 pages

neurofins 🔅

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 696879 Project: SPECIAL Group: Jar Test

Laboratory QC

Goleta Water District

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MS2_201711020241	Bromodichloromethane	28	40	70.8	ug/L	106	(80-120)		
сссн	Bromoform		40	40.3	ug/L	101	(80-120)		
CCCH	Bromoform		40	39,6	ug/L	99	(80-120)		
CCCH	Bromoform		40	40.2	ug/L	101	(80-120)		
CCCM	Bromoform		20	20.2	ug/L	101	(80-120)		
CCCM	Bromoform		20	20.2	ug/L	101	(80-120)		
DUP1_201711020235	Bromoform	0.56		0.574	ug/L		(0-20)		
DUP2_201711020242	Bromoform	0.64		0.631	ug/L		(0-20)		
LCS1	Bromoform		20	20.2	ug/L	101	(80-120)		
MBLK	Bromoform			<0.5	ug/L				
MRL_CHK	Bromoform		0.5	0.622	ug/L	124	(50-150)		
MS1_201711020234	Bromoform	0.73	20	20.5	ug/L	99	(80-120)		
MS2_201711020241	Bromoform	0.68	40	40.1	ug/L	99	(80-120)		
СССН	Chloroform		40	39.6	ug/L	99	(80-120)		
CCCH	Chloroform		40	39.0	ug/L	98	(80-120)		
CCH	Chloroform		40	39.8	ug/L	99	(80-120)		
CCCM	Chloroform		20	19.2	ug/L	96	(80-120)		
CCCM	Chloroform		20	18.9	ug/L	95	(80-120)		
OUP1_201711020235	Chloroform	93		97.8	ug/L		(0-20)	20	5.1
OUP2_201711020242	Chloroform	82		80.2	ug/L		(0-20)	20	2.7
.CS1	Chloroform		20	19.6	ug/L	98	(80-120)		
IBLK	Chloroform			<0.5	ug/L				
IRL_CHK	Chloroform		0.5	0.586	ug/L	117	(50-150)		
IS1_201711020234	Chloroform	74	40	94.6	ug/L	104	(80-120)		
/S2_201711020241	Chloroform	81	200	119	ug/L	94	(80-120)		
CCH	Dibromochloromethane		40	39.6	ug/L	99	(80-120)		
CCH	Dibromochloromethane		40	38.9	ug/L	97	(80-120)		
CCH	Dibromochloromethane		40	39.6	ug/L	99	(80-120)		
CCM	Dibromochloromethane		20	19.3	ug/L	96	(80-120)		
CCM	Dibromochloromethane		20	19.2	ug/L	96	(80-120)		
UP1_201711020235	Dibromochloromethane	9.1		9.53	ug/L		(0-20)	20	5.0
UP2_201711020242	Dibromochloromethane	8.8		8.52	ug/L		(0-20)	20	3.1
CS1	Dibromochloromethane		20	19.8	ug/L	99	(80-120)		
IBLK	Dibromochloromethane			<0.5	ug/L				
IRL_CHK	Dibromochloromethane		0.5	0.512	ug/L	102	(50-150)		
IS1_201711020234	Dibromochloromethane	9.5	20	28.4	ug/L	94	(80-120)		
IS2_201711020241	Dibromochloromethane	9.2	40	48.3	ug/L	98	(80-120)		

Spike recovery is already corrected for native results. Spikes which exceed Lintes and Method Blanks with positive results are highlighted by <u>Underfining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for dupticates are advisory only, unless otherwise specified in the method. RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Dupticates when the result is not five times the MRL (Minimum Reporting Level), (3) - Indicates unrogate compound. (i) - Indicates internal standard compound.

Page 18 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 696879 Project: SPECIAL Group: Jar Test

Laboratory QC

Goleta Water District

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
EPA Method 551.1	Trihalomethanes by EPA 551.1								
Analytical B	atch: 1040257					An	alysis Date:	11/02/2017	
СССН	1,2-Dibromopropane (S)			92,5	%	92	(80-120)		
СССН	1,2-Dibromopropane (S)			100	%	100	(80-120)		
CCCM	1,2-Dibromopropane (S)			94.9	%	95	(80-120)		
CCCM	1,2-Dibromopropane (S)			95.0	%	95	(80-120)		
DUP1_201711020244	1,2-Dibromopropane (S)			102	%	102	(80-120)		
DUP2_201710260392	1,2-Dibromopropane (S)			105	%	105	(80-120)		
LCS1	1,2-Dibromopropane (S)			97.2	%	97	(80-120)		
MBLK	1,2-Dibromopropane (S)			106	%	106	(80-120)		
MRL_CHK	1,2-Dibromopropane (S)			102	%	102	(80-120)		
MS1_201711020243	1,2-Dibromopropane (S)			92.1	%	92	(80-120)		
MS2_201710260391	1,2-Dibromopropane (S)			96.0	%	96	(80-120)		
СССН	4-Bromofluorobenzene (I)			100	%	100	(80-120)		
CCCH	4-Bromofluorobenzene (I)			101	%	101	(80-120)		
CCCM	4-Bromofluorobenzene (I)			99.7	%	100	(80-120)		
CCCM	4-Bromofluorobenzene (I)			100	%	101	(80-120)		
DUP1_201711020244	4-Bromofluorobenzene (I)			99.8	%	100	(80-120)		
DUP2_201710260392	4-Bromofluorobenzene (I)			99.0	%	99	(80-120) ·		
LCS1	4-Bromofluorobenzene (I)			99.7	%	100	(80-120)		
MBLK	4-Bromofluorobenzene (I)			99.1	%	99	(80-120)		
MRL_CHK	4-Bromofluorobenzene (I)			99.0	%	99	(80-120)		
MS1_201711020243	4-Bromofluorobenzene (I)			100	%	100	(80-120)		
MS2_201710260391	4-Bromofluorobenzene (I)			102	%	102	(80-120)		
CCCH	Bromodichloromethane		40	38.2	ug/L	96	(80-120)		
СССН	Bromodichloromethane		40	38.9	ug/L	97	(80-120)		
CCCM	Bromodichloromethane		20	18.6	ug/L	93	(80-120)		
CCCM	Bromodichloromethane		20	18.6	ug/L	93	(80-120)		
DUP1_201711020244	Bromodichloromethane	27		26.6	ug/L		(0-20)	20	0.87
DUP2_201710260392	Bromodichloromethane	8.2		8.18	ug/L		(0-20)	20	0.13
LCS1	Bromodichloromethane		20	18.5	ug/L	93	(80-120)		
MBLK	Bromodichloromethane			<0.5	ug/L				
/RL_CHK	Bromodichloromethane		0.5	0.490	ug/L	98	(50-150)		
MS1_201711020243	Bromodichloromethane	28	20	48.4	ug/L	101	(80-120)		
AS2_201710260391	Bromodichloromethane	7.6	40	46.9	ug/L	98	(80-120)		
ССН	Bromoform		40	39.6	ug/L	99	(80-120)		
CCH	Bromoform		40	40.2	ug/L	101	(80-120)		

Spike recovery is already corrected for native results. Spike which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LOS2 when different a concentration than LCS1 is used. RPD not calculated for LOS2 when the result is not five times the MRL (Minimum Reporting Level). (i) - Indicates surrogate compound. (ii) - Indicates internal standard compound.

Page 19 of 20 pages

Eaton Analytical

Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Report: 696879 Project: SPECIAL Group: Jar Test

Laboratory QC

Goleta Water District

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
CCCM	Bromoform		20	20.3	ug/L	102	(80-120)		
CCCM	Bromoform		20	20.3	ug/L	101	(80-120)		
DUP1_201711020244	Bromoform	0.63		0.613	ug/L		(0-20)		
DUP2_201710260392	Bromoform	3.6		3.75	ug/L		(0-20)	20	2.4
_CS1	Bromoform		20	20.2	ug/L	101	(80-120)		
MBLK	Bromoform			<0.5	ug/L				
MRL_CHK	Bromoform		0.5	0.623	ug/L	125	(50-150)		
MS1_201711020243	Bromoform	0.66	20	20.8	ug/L	101	(80-120)		
MS2_201710260391	Bromoform	2.7	40	41.6	ug/L	97	(80-120)		
СССН	Chloroform		40	39.0	ug/L	98	(80-120)		
CCCH	Chloroform		40	39.8	ug/L	99	(80-120)		
CCCM	Chloroform		20	19.2	ug/L	96	(80-120)		
CCCM	Chloroform		20	19,2	ug/L	96	(80-120)		
OUP1_201711020244	Chloroform	96		95.3	ug/L		(0-20)	20	0.40
OUP2_201710260392	Chloroform	7.7		7.67	ug/L		(0-20)	20	0.44
.CS1	Chloroform		20	19.6	ug/L	98	(80-120)		
MBLK	Chloroform			<0.5	ug/L				
MRL_CHK	Chloroform		0.5	0.582	ug/L	117	(50-150)		
MS1_201711020243	Chloroform	90	40	108	ug/L	92	(80-120)		
AS2_201710260391	Chloroform	7.4	40	46.1	ug/L	97	(80-120)		
CCH	Dibromochloromethane		40	38.9	ug/L	97	(80-120)		
ССН	Dibromochloromethane		40	39.6	ug/L	99	(80-120)		
CCCM	Dibromochloromethane		20	19.3	ug/L	97	(80-120)		
CCM	Dibromochloromethane		20	19.3	ug/L	97	(80-120)		
OUP1_201711020244	Dibromochloromethane	8.3		8.22	ug/L		(0-20)	20	0.70
OUP2_201710260392	Dibromochloromethane	8.0		8.10	ug/L		(0-20)	20	0.76
.CS1	Dibromochloromethane		20	19.8	ug/L	99	(80-120)		
IBLK	Dibromochloromethane			<0.5	ug/L				
ARL_CHK	Dibromochloromethane		0.5	0.508	ug/L	102	(50-150)		
IS1_201711020243	Dibromochloromethane	8,9	20	28.2	ug/L	96	(80-120)		
AS2 201710260391	Dibromochloromethane	7.3	40	45.8	ug/L	96	(80-120)		

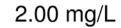
Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method. RPD not calculated for LOS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level). (5) - Indicates surrogate compound. (1) - Indicates internal standard compound.

Page 20 of 20 pages

Attachment 6 – Daily Treatment Parameters Monitoring Sheet

()e:					1	Perfo grey	Water orm all an yed boxe offi	alyses	except		Peak	Flow (08 W	Tim	0): ie: t (Y/N):	
		Condu	ctivity	C	olor	1000	σΗ	Te	mp	R	Alka	alinity	FF	Titran H ₂ SO ₄	
Time	An	RAW	EFF	RAW	EFF	RAW	CW	RAW	CW	ml _{titrant}	Alk	ml _{utrant}	Alk	tate	
									- 11	1.5					
		Dup:	-	a la comp		14.1.1		1020-1				-			4
Time	4-	RAW	and a second		al (mg/		DAW	and the second second second	bidity (N				H		mp
Time 0800	An	RAW	FM2	CEC	CW	EFF	RAW	FM2	CEC	CW	EFF	RAW	CW	RAW	CW
0800			-	-					-		-				
			-										-		-
	-				-			-	-			- Lette	1	-	1
	-												-		
				-	2	-							-		-
					-						-		-	-	-
			-					-			-	-			-
7								-	711 - 1	1		1971		-	1
4	-	-		-	-				-				-	-	
	-		-		-	-			-	-	- AND				-
	-		_	-											-
-	+														12.00
	-		-						201	dicma r	den a	detb	(1) (1)	165465	1
			-					-	-						-
		eers.	alsa	i tetti	Sede	Sec law	"selfer"	Adda	190.00	are they	Ulimas	grab	17 19715		
	-			-	1000	- 626	0.0113	11. 12/11/2	50 m8	-					-
		-		-							-	-			
	-	199	100	10. M1-		1.057			al real	100-A	_				
	-		10	1	- di	10.01	12	Inote	100						
-	Titront	0.02N			Hards	ess _{Total}				103.114	Ner Volle		7.	D.N.	_
	EDTA		101101	R	AW		FF		Swilling.	Time	An	RAW	FM2	CEC	CW
	Γ	Time	An	ml _{titrant}	Hd _{Total}	ml _{titrant}	Hd _{Total}		N. W. Ha						-
	I		U.V.		. vial	1015			(Jan 10	107					_

DailyWaterQualityRecord rev033116da


			a Del Ma Daily Wa		Treatmer			
				Side 2				
		Filt	er Turbidit	ty Grab Sa	mple Ana	lysis		
Deter								
Date:		-						
					uent Turb			
Time	Analyst	Filter #1	Filter #2	Filter #3	Filter #4	Filter #5	Filter #6	CW
		See and	Stren March			1.1.5		S. A.
								Control and
						and the		-
								_
	-							
		E 1.00						-
								-
							1	
	1. 1. 1						THE TANK	
		100000	and the second					
				1.1.1.1				200
						111		(Q+)
		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				P	and the second	Contraction in the
Reason(s) for grab	sample a	nalvsis					
Reasonijs	, ioi grab	Sample a	narysis.				Indiana (E)	101
1 1 1 1 1								1.1
1.0.16	1000 15	1 Sales		1. 19 1.				
Be su	re to grab	sample a	t exactly 4	hours aft	er backwa	shed filte	r put into s	ervice
		if pi	roblem oc	curs within	n those 4	hours		
					and sugar signified		address of the	
			Analysis		Method SM 2320 B		Units mg/L as CaC	0
			Alkalinity					.03
			Chlorine Res	sidual	SM 4500-C	D	mg L	
Standard Me			Color	- DE	SM 2120 B		color units µmhos/cm	
of Water and	Wastewater,	20th Ed., 199	6 Conductivity	y	SM 2510 B SM 4500-H	* B	pH units	
			pH Temperatur	A	SM 2550 B		°C	
			Threshold C		SM 2150 B		T.O.N.	
			Total Hardn		SM 2340 C		mg/L as CaC	:O ₃
			Turbidity		EPA 180.1		NTU	

Attachment 7 – Chemical Feed Plusafeeder Dosing Chart 2 – 10 mg/L

9.84 LBS / GAL

JC 9450 oxidant

(Pump Max)

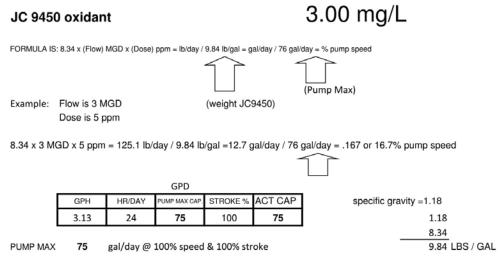
FORMULA IS: 8.34 x (Flow) MGD x (Dose) ppm = lb/day / 9.84 lb/gal = gal/day / 76 gal/day = % pump speed

Example: Flow is 3 MGD Dose is 5 ppm

8.34 x 3 MGD x 5 ppm = 125.1 lb/day / 9.84 lb/gal =12.7 gal/day / 76 gal/day = .167 or 16.7% pump speed

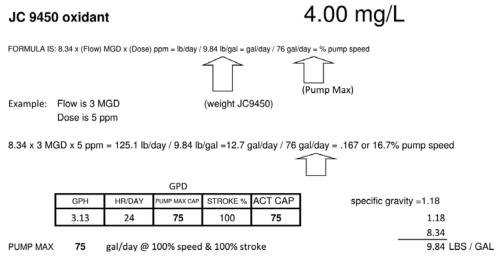
(weight JC9450)

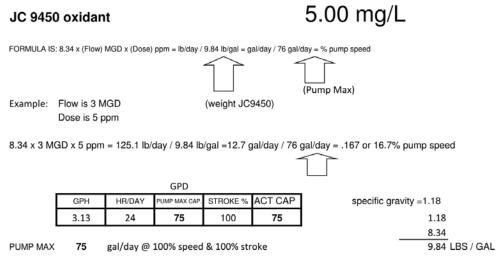
GPD

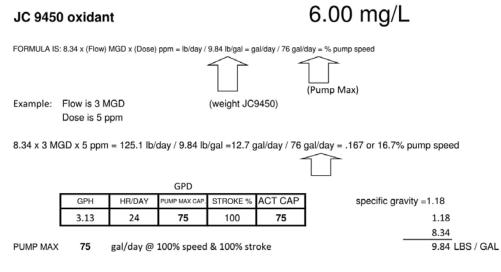

GPH	HR/DAY	PUMP MAX CAP.	STROKE %	ACT CAP	specific gravity =1.18
3.13	24	75	100	75	1.18
					8 34

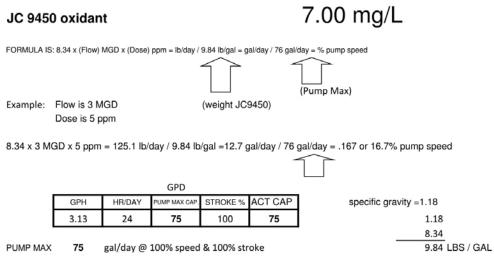
PUMP MAX

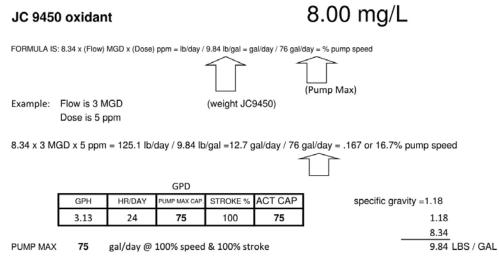
75 gal/day @ 100% speed & 100% stroke

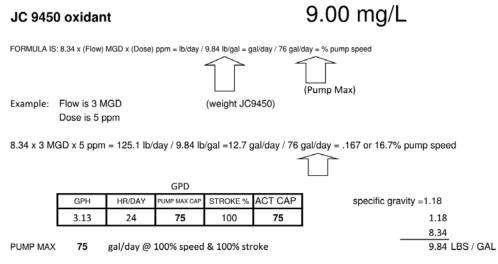

							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	2.00	50.04	2.09	5.09	7	100	13.4
3.5	2.00	58.38	2.43	5.93	8	100	15.6
4	2.00	66.72	2.78	6.78	9	100	17.8
4.5	2.00	75.06	3.13	7.63	10	100	20.1
5	2.00	83.4	3.48	8.48	11	100	22.3
5.5	2.00	91.74	3.82	9.32	12	100	24.5
6	2.00	100.08	4.17	10.17	14	100	26.7
6.5	2.00	108.42	4.52	11.02	15	100	29.0
7	2.00	116.76	4.87	11.87	16	100	31.2
7.5	2.00	125.1	5.21	12.71	17	100	33.4
8	2.00	133.44	5.56	13.56	18	100	35.6
8.5	2.00	141.78	5.91	14.41	19	100	37.9
9	2.00	150.12	6.26	15.26	20	100	40.1
9.5	2.00	158.46	6.60	16.10	21	100	42.3
10	2.00	166.8	6.95	16.95	23	100	44.6
11	2.00	183.48	7.65	18.65	25	100	49.0
12	2.00	200.16	8.34	20.34	27	100	53.5
13	2.00	216.84	9.04	22.04	29	100	57.9
14	2.00	233.52	9.73	23.73	32	100	62.4
15	2.00	250.2	10.43	25.43	34	100	66.8
16	2.00	266.88	11.12	27.12	36	100	71.3
17	2.00	283.56	11.82	28.82	38	100	75.7
18	2.00	300.24	12.51	30.51	41	100	80.2

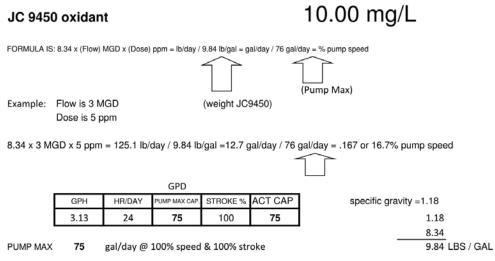

							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	3.00	75.06	3.13	7.63	10	100	20.1
3.5	3.00	87.57	3.65	8.90	12	100	23.4
4	3.00	100.08	4.17	10.17	14	100	26.7
4.5	3.00	112.59	4.69	11.44	15	100	30.1
5	3.00	125.1	5.21	12.71	17	100	33.4
5.5	3.00	137.61	5.73	13.98	19	100	36.8
6	3.00	150.12	6.26	15.26	20	100	40.1
6.5	3.00	162.63	6.78	16.53	22	100	43.4
7	3.00	175.14	7.30	17.80	24	100	46.8
7.5	3.00	187.65	7.82	19.07	25	100	50.1
8	3.00	200.16	8.34	20.34	27	100	53.5
8.5	3.00	212.67	8.86	21.61	29	100	56.8
9	3.00	225.18	9.38	22.88	31	100	60.2
9.5	3.00	237.69	9.90	24.16	32	100	63.5
10	3.00	250.2	10.43	25.43	34	100	66.8
11	3.00	275.22	11.47	27.97	37	100	73.5
12	3.00	300.24	12.51	30.51	41	100	80.2
13	3.00	325.26	13.55	33.05	44	100	86.9
14	3.00	350.28	14.60	35.60	47	100	93.6
15	3.00	375.3	15.64	38.14	51	100	100.3
16	3.00	400.32	16.68	40.68	54	100	106.9
17	3.00	425.34	17.72	43.23	58	100	113.6
18	3.00	450.36	18.77	45.77	61	100	120.3


							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	4.00	100.08	4.17	10.17	14	100	26.7
3.5	4.00	116.76	4.87	11.87	16	100	31.2
4	4.00	133.44	5.56	13.56	18	100	35.6
4.5	4.00	150.12	6.26	15.26	20	100	40.1
5	4.00	166.8	6.95	16.95	23	100	44.6
5.5	4.00	183.48	7.65	18.65	25	100	49.0
6	4.00	200.16	8.34	20.34	27	100	53.5
6.5	4.00	216.84	9.04	22.04	29	100	57.9
7	4.00	233.52	9.73	23.73	32	100	62.4
7.5	4.00	250.2	10.43	25.43	34	100	66.8
8	4.00	266.88	11.12	27.12	36	100	71.3
8.5	4.00	283.56	11.82	28.82	38	100	75.7
9	4.00	300.24	12.51	30.51	41	100	80.2
9.5	4.00	316.92	13.21	32.21	43	100	84.7
10	4.00	333.6	13.90	33.90	45	100	89.1
11	4.00	366.96	15.29	37.29	50	100	98.0
12	4.00	400.32	16.68	40.68	54	100	106.9
13	4.00	433.68	18.07	44.07	59	100	115.8
14	4.00	467.04	19.46	47.46	63	100	124.8
15	4.00	500.4	20.85	50.85	68	100	133.7
16	4.00	533.76	22.24	54.24	72	100	142.6
17	4.00	567.12	23.63	57.63	77	100	151.5
18	4.00	600.48	25.02	61.02	81	100	160.4


							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	5.00	125.1	5.21	12.71	17	100	33.4
3.5	5.00	145.95	6.08	14.83	20	100	39.0
4	5.00	166.8	6.95	16.95	23	100	44.6
4.5	5.00	187.65	7.82	19.07	25	100	50.1
5	5.00	208.5	8.69	21.19	28	100	55.7
5.5	5.00	229.35	9.56	23.31	31	100	61.3
6	5.00	250.2	10.43	25.43	34	100	66.8
6.5	5.00	271.05	11.29	27.55	37	100	72.4
7	5.00	291.9	12.16	29.66	40	100	78.0
7.5	5.00	312.75	13.03	31.78	42	100	83.5
8	5.00	333.6	13.90	33.90	45	100	89.1
8.5	5.00	354.45	14.77	36.02	48	100	94.7
9	5.00	375.3	15.64	38.14	51	100	100.3
9.5	5.00	396.15	16.51	40.26	54	100	105.8
10	5.00	417	17.38	42.38	57	100	111.4
11	5.00	458.7	19.11	46.62	62	100	122.5
12	5.00	500.4	20.85	50.85	68	100	133.7
13	5.00	542.1	22.59	55.09	73	100	144.8
14	5.00	583.8	24.33	59.33	79	100	155.9
15	5.00	625.5	26.06	63.57	85	100	167.1
16	5.00	667.2	27.80	67.80	90	100	178.2
17	5.00	708.9	29.54	72.04	96	100	189.4
18	5.00	750.6	31.28	76.28	102	100	200.5


							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	6.00	150.12	6.26	15.26	20	100	40.1
3.5	6.00	175.14	7.30	17.80	24	100	46.8
4	6.00	200.16	8.34	20.34	27	100	53.5
4.5	6.00	225.18	9.38	22.88	31	100	60.2
5	6.00	250.2	10.43	25.43	34	100	66.8
5.5	6.00	275.22	11.47	27.97	37	100	73.5
6	6.00	300.24	12.51	30.51	41	100	80.2
6.5	6.00	325.26	13.55	33.05	44	100	86.9
7	6.00	350.28	14.60	35.60	47	100	93.6
7.5	6.00	375.3	15.64	38.14	51	100	100.3
8	6.00	400.32	16.68	40.68	54	100	106.9
8.5	6.00	425.34	17.72	43.23	58	100	113.6
9	6.00	450.36	18.77	45.77	61	100	120.3
9.5	6.00	475.38	19.81	48.31	64	100	127.0
10	6.00	500.4	20.85	50.85	68	100	133.7
11	6.00	550.44	22.94	55.94	75	100	147.0
12	6.00	600.48	25.02	61.02	81	100	160.4
13	6.00	650.52	27.11	66.11	88	100	173.8
14	6.00	700.56	29.19	71.20	95	100	187.1
15	6.00	750.6	31.28	76.28	102	100	200.5
16	6.00	800.64	33.36	81.37	108	100	213.9
17	6.00	850.68	35.45	86.45	115	100	227.2
18	6.00	900.72	37.53	91.54	122	100	240.6


							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	7.00	175.14	7.30	17.80	24	100	46.8
3.5	7.00	204.33	8.51	20.77	28	100	54.6
4	7.00	233.52	9.73	23.73	32	100	62.4
4.5	7.00	262.71	10.95	26.70	36	100	70.2
5	7.00	291.9	12.16	29.66	40	100	78.0
5.5	7.00	321.09	13.38	32.63	44	100	85.8
6	7.00	350.28	14.60	35.60	47	100	93.6
6.5	7.00	379.47	15.81	38.56	51	100	101.4
7	7.00	408.66	17.03	41.53	55	100	109.2
7.5	7.00	437.85	18.24	44.50	59	100	117.0
8	7.00	467.04	19.46	47.46	63	100	124.8
8.5	7.00	496.23	20.68	50.43	67	100	132.6
9	7.00	525.42	21.89	53.40	71	100	140.4
9.5	7.00	554.61	23.11	56.36	75	100	148.1
10	7.00	583.8	24.33	59.33	79	100	155.9
11	7.00	642.18	26.76	65.26	87	100	171.5
12	7.00	700.56	29.19	71.20	95	100	187.1
13	7.00	758.94	31.62	77.13	103	100	202.7
14	7.00	817.32	34.06	83.06	111	100	218.3
15	7.00	875.7	36.49	88.99	119	100	233.9
16	7.00	934.08	38.92	94.93	127	100	249.5
17	7.00	992.46	41.35	100.86	134	100	265.1
18	7.00	1050.84	43.79	106.79	142	100	280.7


							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	8.00	200.16	8.34	20.34	27	100	53.5
3.5	8.00	233.52	9.73	23.73	32	100	62.4
4	8.00	266.88	11.12	27.12	36	100	71.3
4.5	8.00	300.24	12.51	30.51	41	100	80.2
5	8.00	333.6	13.90	33.90	45	100	89.1
5.5	8.00	366.96	15.29	37.29	50	100	98.0
6	8.00	400.32	16.68	40.68	54	100	106.9
6.5	8.00	433.68	18.07	44.07	59	100	115.8
7	8.00	467.04	19.46	47.46	63	100	124.8
7.5	8.00	500.4	20.85	50.85	68	100	133.7
8	8.00	533.76	22.24	54.24	72	100	142.6
8.5	8.00	567.12	23.63	57.63	77	100	151.5
9	8.00	600.48	25.02	61.02	81	100	160.4
9.5	8.00	633.84	26.41	64.41	86	100	169.3
10	8.00	667.2	27.80	67.80	90	100	178.2
11	8.00	733.92	30.58	74.59	99	100	196.0
12	8.00	800.64	33.36	81.37	108	100	213.9
13	8.00	867.36	36.14	88.15	118	100	231.7
14	8.00	934.08	38.92	94.93	127	100	249.5
15	8.00	1000.8	41.70	101.71	136	100	267.3
16	8.00	1067.52	44.48	108.49	145	100	285.2
17	8.00	1134.24	47.26	115.27	154	100	303.0
18	8.00	1200.96	50.04	122.05	163	100	320.8

							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	9.00	225.18	9.38	22.88	31	100	60.2
3.5	9.00	262.71	10.95	26.70	36	100	70.2
4	9.00	300.24	12.51	30.51	41	100	80.2
4.5	9.00	337.77	14.07	34.33	46	100	90.2
5	9.00	375.3	15.64	38.14	51	100	100.3
5.5	9.00	412.83	17.20	41.95	56	100	110.3
6	9.00	450.36	18.77	45.77	61	100	120.3
6.5	9.00	487.89	20.33	49.58	66	100	130.3
7	9.00	525.42	21.89	53.40	71	100	140.4
7.5	9.00	562.95	23.46	57.21	76	100	150.4
8	9.00	600.48	25.02	61.02	81	100	160.4
8.5	9.00	638.01	26.58	64.84	86	100	170.4
9	9.00	675.54	28.15	68.65	92	100	180.5
9.5	9.00	713.07	29.71	72.47	97	100	190.5
10	9.00	750.6	31.28	76.28	102	100	200.5
11	9.00	825.66	34.40	83.91	112	100	220.6
12	9.00	900.72	37.53	91.54	122	100	240.6
13	9.00	975.78	40.66	99.16	132	100	260.7
14	9.00	1050.84	43.79	106.79	142	100	280.7
15	9.00	1125.9	46.91	114.42	153	100	300.8
16	9.00	1200.96	50.04	122.05	163	100	320.8
17	9.00	1276.02	53.17	129.68	173	100	340.9
18	9.00	1351.08	56.30	137.30	183	100	360.9

							Draw
FLOW	Dose	Feed in	Feed in	Feed in	Pump	Pump	Down
(MGD)	(ppm)	lb/day	lb/hr	gal/day	Speed	Stroke	(ml/min)
3	10.00	250.2	10.43	25.43	34	100	66.8
3.5	10.00	291.9	12.16	29.66	40	100	78.0
4	10.00	333.6	13.90	33.90	45	100	89.1
4.5	10.00	375.3	15.64	38.14	51	100	100.3
5	10.00	417	17.38	42.38	57	100	111.4
5.5	10.00	458.7	19.11	46.62	62	100	122.5
6	10.00	500.4	20.85	50.85	68	100	133.7
6.5	10.00	542.1	22.59	55.09	73	100	144.8
7	10.00	583.8	24.33	59.33	79	100	155.9
7.5	10.00	625.5	26.06	63.57	85	100	167.1
8	10.00	667.2	27.80	67.80	90	100	178.2
8.5	10.00	708.9	29.54	72.04	96	100	189.4
9	10.00	750.6	31.28	76.28	102	100	200.5
9.5	10.00	792.3	33.01	80.52	107	100	211.6
10	10.00	834	34.75	84.76	113	100	222.8
11	10.00	917.4	38.23	93.23	124	100	245.1
12	10.00	1000.8	41.70	101.71	136	100	267.3
13	10.00	1084.2	45.18	110.18	147	100	289.6
14	10.00	1167.6	48.65	118.66	158	100	311.9
15	10.00	1251	52.13	127.13	170	100	334.2
16	10.00	1334.4	55.60	135.61	181	100	356.4
17	10.00	1417.8	59.08	144.09	192	100	378.7
18	10.00	1501.2	62.55	152.56	203	100	401.0

Attachment 8 – Filter Preparation Procedures

Filter Preparation

The filters will need to be pre-conditioned, this will be achieved via super chlorination of the filter units. Three filters will be used for the test, this will consist of filters 1-3 at the Corona Del Mar Treatment Plant. Each filter will be super chlorinated to 100mg/L using sodium hypochlorite. The example calculation for the super chlorination is detailed below:

Filter area = $702 \text{ ft}^2 X$ (Depth of media 3.5 ft. + Depth of water over media= 3.7 ft.)= 5055 ft^3 Filter Volume (Gallons) = $5055 \text{ ft}^3 x 7.48 \text{ gal /ft}^3 = 37,810 \text{ gallons/1,000,000} = 0.0378MG$ Gallons of Chemical Needed = (0.0378 * 8.34 * 100) = $31.5 \text{ Lbs. of } 100\% \div 1.21 \text{ Lbs./gal}$ = 26 gallons of 12.5 % Sodium Hypochlorite.

Filter Super Chlorination Procedure

Expected to commence week beginning: Tuesday, December 26, 2017

Expected Duration: 3 Days

Step	Task	Description
Task 1	. Filter Analysis Baseline	
1.01	Day 0 - Collect Water Quality Samples of Filter Influent (as detailed in Table 5)	Collect water samples of the filter influent, samples will be taken once before commencement of super chlorination
1.02	Day 0 - Collect water quality samples of Filter effluent (as detailed in Table 5)	Collect water samples of the filter effluent, samples will be taken once before commencement of super chlorination
Task 2	Filter Backwash Procedure	
2.01	Close Filter Influent Valve	At Filter Control Console (FCC) turn Filter Influent switch from AUTO to CLOSE. Leave switch in close position for 15-20 seconds, then turn switch to HOLD. Repeat until the Filter Influent valve is fully closed (light will come on)
2.02	PLC Filter Drain	Note: At this point the SCADA control will automatically change the filter operating mode to 3=DRAIN MODE. In this mode the PLC will automatically ramp the Filter Effluent Flow to the Drain Mode set point, monitor the water level in the filter.
2.03	PLC Filter Effluent Valve Close	Open the WW Drain VLV (when water is at the top of the wash water launders). The filter will continue to drain until it's at the 0.5 ft level. At this point the PLC will shut the Filter Effluent Valve.
2.04	Wash filter with hose.	Wash the filter with a hose. Remove all material from launders and air scourers.

Step	Task	Description
2.06	Open Air Scour Valve	Open the Filter Air Scour Valve (Scour VLV), wait for the green indicator light for valve to come on.
2.08	Air Blower to manual Control	Turn Air Blower to HAND (filter air compressor), there will be a delay for the compressor to start. When the compressor has started and air is coming up through the media, allow this to run for 1 minute. Then turn back to AUTO.
2.09	Air Scour valve to close	Turn Air Scour to CLOSE, wait until light comes on.
2.08	Wash Water Valve to Open	Turn WW VLV to OPEN, wait for it to fully open.
2.10	Backwash Flow Control to Manual	Locate the Backwash Flow Controller on the FCC, switch from HOST to MANUAL.
2.11	Increase Backwash Water Flows	Push the UP arrow button to open valve to 15% (screen is hard to see, second line of small numbers is the % line) (5 gpm/ft2). After flow increases (give it a minute or so) increase opening to 23% (10 gpm/ft2).
2.13	Backwash Polymer Feed to Manual	Turn Polymer BW to HAND.
2.14	Increase Backwash Water Flows to Max Value	Continue to ramp up the flow to 35% valve opening. (15 gpm/ft2 minimum to 17 gpm/ft2 maximum depending on water temperature, check current high flow set point).
2.15	Completion of Backwash Water Cycle, Backwash Polymer to Auto	Wait for 5 minutes. When you see the large stainless steel support beam under the launder, then put Polymer BW to AUTO.
2.16	Decrease the Backwash Water Flows	On the Backwash Flow Controller press the Down arrow to decrease valve position to 23% (10 gpm/ft2).
2.17	Close Wash Water Drain Valve	CLOSE WW Drain VLV.
2.18	Set Up Filter for Super Chlorination	The filter should be isolated from the (CEC) Clarifier Effluent Channel, all filter valves should be closed and in manual on the (FCC) Filter Control Console) and the water level in the filter should be at the crest of the wash water troughs.
Task 3	. Filter Super Chlorination Pr	
3.01	Super Chlorination Setup	Using the chlorine transfer tote and the portable diaphragm chemical transfer pump, add the proper amount of Sodium Hypochlorite to dose the filter and water to 100 ppm = 26 gallons of 12.5 % Hypochlorite (1.21 Lbs./ gal)
3.02	Open Air Scour Valve, Run Air Scour for 90 Seconds	At the FCC, open the air scour valve. When valve is open place Blower manual run switch to the RUN position. Run the air scour for 90 seconds, then place switch in STOP and close the air scour valve.
3.03	24 Hour Hold	Let filter stand for 24 hours

Step	Task	Description
3.04	Follow Step 2.08 – 2.16	Follow the manual filter backwash procedure
3.05	STOP – Chlorine Residual	Allow the filter to rinse at the low flow rate until grab samples
5.05	Check	from the surface of the water in the filter has a free residual of
		<.2 ppm.
	STOP	
3.06	Close Wash Water Drain	CLOSE WW Drain VLV.
5.00	Valve	
Task 4	. Placing Filter Back in Service	2
4.01	Wash Water Polymer to	Place Polymer WW in HAND
4.65	Hand	
4.02	Slow backwash Filter	Set Backwash Flow Controller to 15% (5 gpm/ft2). Down Arrow
4.03	Wash Water Polymer to	again. When filter gets to 5.5 feet (or level with the other filters) place
	Auto	Polymer WW in AUTO.
4.04	Backwash Controller to	Reset Backwash Flow Controller to HOST (this will set flow to
	HOST	zero).
4.05	Open Filter Influent Valve	Open the Filter Influent Valve by placing it in OPEN for
		approximately 20 seconds then HOLD for approximately 1 minute. Repeat until valve is opened and leave in OPEN.
4.06	Wash Water Valve Remain	Leave Wash Water valve OPEN (valve Number ends in 13)
	Open	examples (113, 213, 313, etc)
4.07	Filter To Waste Valve to	At SCADA on Filter to Waste (FTW) screen Click the FTW Valve
	Manual	116 to open the valve control screen. Select "MAN" and set the
4.08	Set FTW timer	valve % to achieve the desired flow rate (.8 MGD is good) Set a timer for 15 minutes. You should carefully monitor the
4.08	Set FI W timer	FTW flow rate and keep it smooth at 0.8 mgd.
4.09	Close Wash Water Valve,	After fifteen minutes on the filter table close the Wash Water
	Set all Valves to Auto	Valve that was left open in step 4.06. Also insure that all valves
		at table are in auto except the filter influent valve.
4.10	Close FTW valve	Back at SCADA close the FTW valve by entering a 0% manual
4.11	STOP - Filter Control Mode	valve position. FTW flow should be ZERO. Go back to the "Filter Valve Control" screen on SCADA. Verify
7.11	Set to 0	that the "Filter Control mode" is set to "0". If not, set to "0".
	STOP	

Step	Task	Description
4.12	STOP - Check Plant Influent Valve Control	IF PLANT IS IN INFLUENT VALVE CONTROL= AFTER 40 MINUTES RETYPE THE INFLUENT FLOW SETPOINT AND THE FILTER WILL BE PLACED AT THE APPROPRIATE FLOW BY THE PLC.(SKIP STEPS 4.13 , 4.14)
4.13	Filter Mode Setpoint at 0.8MGD	Verify that in the line above this, labeled "Filter Mode Set point", is set at desired startup flow (0.8 MGD).
4.14	Filter to Flow Mode	Back to the "Filter Control Mode" highlight the "0" and click to bring up the change box, enter a "2" for the filter to operate in FLOW mode, hit ENTER.
4.15	STOP - Verify All Valves in Auto	Return to the FCC and verify that all valves are in the AUTO position. PLACE THE FILTER INFLUENT VALVE IN AUTO
4.16	Check for Turbidity Spikes and then return filter to level mode	The filter is now online and will ramp slowly up to the flow set point. After 25-30 minutes and after any turbidity spike has started subsiding, in the "Filter Control Mode" line, reset the value to "1" for LEVEL control, hit ENTER
4.17	Reset Polymer Pumps	Go to Polymer pumps and flip switches from AUTO to HAND and then back to AUTO to reset them
4.18	Filter Backwash Paperwork	Complete all monitoring and associated filter Backwash paper work as necessary. (Appendix x)

ſ

Attachment 9 – Chemical Addition Troubleshooting

Chemical Addition Problems Procedure

Filter Turbidity Too High

If the filter turbidity is too high and is looking as though the filters will be passing too much turbidity, the following procedure will be undertaken.

Step	Task	Description
Task 1.	. High Filter Turbidity	
1.01	Turbidity above 0.15 NTU	Potential for turbidity to pass through the filters, will cause
		health goals not to be met.
1.02	Is the Issue Isolated to	If it is isolated to one filter then it may be a small turbidity spike,
	One Filter	look at the flow rates on each of the filters to determine if
		higher flows are being experienced by just one filter
1.03	Take grab sample from	Taking a grab sample and this will immediately be run through
	turbidity meter	the HACH 2100AN bench top turbidity meter. If the grab is
		within normal range <0.1 NTU, the turbidity meter is likely to
		have an issue. If so grab samples must be taken every 4 hours until the instrument is repaired.
		If the turbidity is confirmed, continue the procedure
1.02	One filter issue –	Take filter offline then open the wash water drain valve, do not
1.02	Complete filter isolation	allow the filter to continue filtering water as this will cause a
	and backwash	larger turbidity pass through.
		Complete backwash on filter and then return to service
		monitoring the turbidity on startup. If turbidity is shows a
		climbing trend then the filter must be taken offline.
1.03	Turbidity Spike happening	If a turbidity spike is being seen on all filters, the JC9450 test will
	on All filters	cease, all filters will be taken offline and the plant will be
		shutdown to allow the change over to the non JC9450 treatment
1.00		trains.
1.03	Start Treatment Train on	Use the standby treatment train and the standby filtration units
	Non JC9450 Treatment	so that production can still continue, this process should switch
	Trains and Non JC9450 Filters	back to chlorine as the disinfectant at the head of the plant.
1.04	The remaining water in	
1.04	the JC9450 treatment	
	train shall be sent to	
	waste and will be	
	reclaimed through the	
	normal plant process	
1.07	Monitor treatment	Treatment operator to monitor the filter stability on standby
	parameters	filters

Chemical No Feed/Under Feed/Over Feed

The JC9450 chemical feed will be monitored via a Rosemont mag meter, which is linked directly to the plant SCADA system. As such, alarms for no feed or under feed will be audible and visual on the SCADA operator screen. This will allow the operator to assess the situation and switch pumps if necessary to continue feeding the chemical.